Stability of Quantum Dynamical Semigroups and Fixed points

Sachi Srivastava

University of Delhi
(Joint work with B.V.R. Bhat, ISI Bangalore)

6th June 2013
Herrnhut, Germany
By a Quantum dynamical semi-group (QDS), we shall mean a family \((\mathcal{T}_t)_{t \geq 0}\) of linear maps on \(B(H)\), \(H\) a complex, separable Hilbert space, such that

1. \(\mathcal{T}_0(X) = X\), \(\mathcal{T}_s(\mathcal{T}_t(X)) = \mathcal{T}_{t+s}(X)\) for all \(X \in B(H)\).
Quantum Dynamical semigroup

By a Quantum dynamical semi-group (QDS), we shall mean a family \((\mathcal{T}_t)_{t \geq 0}\) of linear maps on \(B(H)\), \(H\) a complex, separable Hilbert space, such that

1. \(\mathcal{T}_0(X) = X, \mathcal{T}_s(\mathcal{T}_t(X)) = \mathcal{T}_{t+s}(X)\) for all \(X \in B(H)\).
2. \(\mathcal{T}\) is completely positive for \(t \geq 0\).
3. \(\mathcal{T}_t\) is contractive and normal \(t \geq 0\).
4. The map \(t \rightarrow \mathcal{T}_t(X)\) is continuous wrt the weak topology on \(B(H)\) for each \(X \in B(H)\).

Further, if \(\mathcal{T}_t(I) = I\) for all \(t > 0\), then the QDS \(\mathcal{T}\) is called a quantum Markov semigroup.

If \(\mathcal{T}_t\) is of the form \(\mathcal{T}_t(X) = A_t X A_t^*\) for a strongly continuous semigroup of contractions \(\{A_t\}_{t \geq 0}\) on \(H\), then \(\mathcal{T}\) is called an elementary QDS.
By a Quantum dynamical semi-group (QDS), we shall mean a family \((T_t)_{t \geq 0}\) of linear maps on \(B(H)\), \(H\) a complex, separable Hilbert space, such that

- (i) \(T_0(X) = X, T_s(T_t(X)) = T_{t+s}(X)\) for all \(X \in B(H)\).
- (ii) \(T\) is completely positive for \(t \geq 0\)
- (iii) \(T_t\) is contractive and normal \(t \geq 0\).
By a Quantum dynamical semi-group (QDS), we shall mean a family \((\mathcal{T}_t)_{t \geq 0}\) of linear maps on \(B(H)\), \(H\) a complex, separable Hilbert space, such that

1. \(\mathcal{T}_0(X) = X, \mathcal{T}_s(\mathcal{T}_t(X)) = \mathcal{T}_{t+s}(X)\) for all \(X \in B(H)\).
2. \(\mathcal{T}\) is completely positive for \(t \geq 0\).
3. \(\mathcal{T}_t\) is contractive and normal \(t \geq 0\).
4. The map \(t \to \mathcal{T}_t(X)\) is continuous wrt the weak topology on \(B(H)\) for each \(X \in B(H)\).
Quantum Dynamical emigroup

By a Quantum dynamical semi-group (QDS), we shall mean a family \((\mathcal{T}_t)_{t \geq 0}\) of linear maps on \(B(H)\), \(H\) a complex, separable Hilbert space, such that

- (i) \(\mathcal{T}_0(X) = X\), \(\mathcal{T}_s(\mathcal{T}_t(X)) = \mathcal{T}_{t+s}(X)\) for all \(X \in B(H)\).
- (ii) \(\mathcal{T}\) is completely positive for \(t \geq 0\)
- (iii) \(\mathcal{T}_t\) is contractive and normal \(t \geq 0\).
- (iv) The map \(t \to \mathcal{T}_t(X)\) is continuous wrt the weak topology on \(B(H)\) for each \(X \in B(H)\).

Further, If \(\mathcal{T}_t(I) = I\) for all \(t > 0\), then the QDS \(\mathcal{T}\) is called a quantum Markov semigroup.
By a Quantum dynamical semi-group (QDS), we shall mean a family \((\mathcal{T}_t)_{t \geq 0}\) of linear maps on \(B(H)\), \(H\) a complex, separable Hilbert space, such that

1. \(\mathcal{T}_0(X) = X, \mathcal{T}_s(\mathcal{T}_t(X)) = \mathcal{T}_{t+s}(X)\) for all \(X \in B(H)\).
2. \(\mathcal{T}_t\) is completely positive for \(t \geq 0\).
3. \(\mathcal{T}_t\) is contractive and normal \(t \geq 0\).
4. The map \(t \mapsto \mathcal{T}_t(X)\) is continuous wrt the weak topology on \(B(H)\) for each \(X \in B(H)\).

Further, if \(\mathcal{T}_t(I) = I\) for all \(t > 0\), then the QDS \(\mathcal{T}\) is called a quantum Markov semigroup.

If \(\mathcal{T}_t\) is of the form \(\mathcal{T}_t(X) = A_t X A_t^*\) for a strongly continuous semigroup of contractions \(\{A_t\}_{t \geq 0}\) on \(H\), then \(\mathcal{T}\) is called an elementary QDS.
The generator of a QDS

The operator \mathcal{L} with domain $\mathcal{D}(\mathcal{L})$ given by

$$\mathcal{D}(\mathcal{L}) = \left\{ X \in B(\mathcal{H}) : \lim_{t \downarrow 0} \frac{\mathcal{T}_t(X) - X}{t} \text{ exits in the weak topology} \right\}$$

$$\mathcal{L}(X) = \lim_{t \downarrow 0} \frac{\mathcal{T}_t(X) - X}{t}$$
Assumption 1. : QDS is uniformly continuous, that is,

$$\lim_{t \downarrow 0} \| T_t - T_0 \| = 0$$
Assumption 1. : QDS is uniformly continuous, that is,

$$\lim_{t\downarrow 0} \| T_t - T_0 \| = 0$$

Assumption 2. : QDS is sub-markovian, that is,

$$T_t(I) \leq I \quad \forall t \geq 0.$$
We shall call the QDS \((\mathcal{T}_t)_{t \geq 0}\)

- Uniformly stable if \(\lim_{t \to \infty} ||\mathcal{T}_t|| = 0\).
When is a QDS "stable"?

We shall call the QDS \((\mathcal{T}_t)_{t \geq 0}\)

- Uniformly stable if \(\lim_{t \to \infty} \|\mathcal{T}_t\| = 0\).
- stable if \(\lim_{t \to \infty} \mathcal{T}_t(I) = 0\) in the strong operator topology.
The two stability notions do not coincide

- Let $\mathcal{H} = L^2(-1, 0)$ and K be the multiplication operator given by $(Kf)(s) = q(s)f(s)$, where $q(s) = s$, $s \in (-1, 0)$.
The two stability notions do not coincide

- Let $\mathcal{H} = L^2(-1, 0)$ and K be the multiplication operator given by $(Kf)(s) = q(s)f(s)$, where $q(s) = s$, $s \in (-1, 0)$.
- Let $(P_t)_{t \geq 0}$ be the uniformly continuous semigroup generated by K, that is, $(P_t f)(s) = e^{tq(s)}f(s)$, for $f \in \mathcal{H}$, $s \in (-1, 0)$, $t \geq 0$.
The two stability notions do not coincide

Let $\mathcal{H} = L^2(-1, 0)$ and K be the multiplication operator given by $(Kf)(s) = q(s)f(s)$, where $q(s) = s$, $s \in (-1, 0)$.

Let $(P_t)_{t \geq 0}$ be the uniformly continuous semigroup generated by K, that is, $(P_tf)(s) = e^{tq(s)}f(s)$, for $f \in \mathcal{H}$, $s \in (-1, 0)$, $t \geq 0$.

Let $T_t(X) = P_tXP_t^*$, $X \in B(\mathcal{H})$, $t \geq 0$. Then T_t is a quantum dynamical semigroup which is not uniformly stable.
The two stability notions do not coincide

Let \(\mathcal{H} = L^2(-1, 0) \) and \(K \) be the multiplication operator given by \((Kf)(s) = q(s)f(s)\), where \(q(s) = s \), \(s \in (-1, 0) \).

Let \((P_t)_{t \geq 0} \) be the uniformly continuous semigroup generated by \(K \), that is, \((P_t f)(s) = e^{tq(s)}f(s)\), for \(f \in \mathcal{H}, s \in (-1, 0), t \geq 0 \).

Let \(T_t(X) = P_tXP_t^*, X \in B(\mathcal{H}), t \geq 0 \). Then \(T_t \) is a quantum dynamical semigroup which is not uniformly stable.

But,

\[
\lim_{t \to \infty} T_t(I)f = \lim_{t \to \infty} \int_{-1}^{0} |e^{2ts}f(s)|^2 ds = 0,
\]

for every \(f \in \mathcal{H} \) making \(T \) stable.
The bounded generator

In the case when \mathcal{T} is uniformly continuous,

- the generator \mathcal{L} is given by

\[
\mathcal{L}(X) = KX + XK^* + \sum_{j=1}^{\infty} L_j^* X L_j, \quad X \in B(\mathcal{H}),
\]

where $K, L_j \in B(\mathcal{H})$ and the sum on the right hand side above converges in strong operator topology.

(Gorini et al, ’76, Lindbald ’76, Christensen and Evans ’79,...)
In the case when \mathcal{T} is uniformly continuous, the generator \mathcal{L} is given by

$$\mathcal{L}(X) = KX + XK^* + \sum_{j=1}^{\infty} L_j^* XL_j, \quad X \in B(\mathcal{H}),$$

where $K, L_j \in B(\mathcal{H})$ and the sum on the right hand side above converges in strong operator topology. (Gorini et al, '76, Lindbald '76, Christensen and Evans '79,...) We write $\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_0$ where \mathcal{L}_1 is the completely positive part of the generator, given by

$$\mathcal{L}_1(X) = \sum_{j} L_j^* XL_j, \quad (1)$$

while \mathcal{L}_0 is given by

$$\mathcal{L}_0(X) = KX + XK^*, \quad (2)$$

for all $X \in B(\mathcal{H})$.

Sachi Srivastava
Stability of Quantum Dynamical Semigroups and Fixed points
Can stability of a uniformly continuous QDS be characterised in terms of the "coefficients" of its generator?
A particular case

Theorem
Suppose that \mathcal{L} is a bounded operator on $B(\mathcal{H})$ with $\mathcal{L}(I) \leq 0$ and there exists a $b < 0$ such that $\sum_j L_j^* L_j < -bl < -(K + K^*)$, where $K, L_j \in B(\mathcal{H})$ and $\mathcal{L}(X) = KX + XK^* + \sum_j L_j^* XL_j$, $X \in B(\mathcal{H})$. Then the Q.D.S. \mathcal{T} generated by \mathcal{L} is stable.
Let $\mathcal{H} = \mathbb{C}^2$ and $a \in \mathbb{C}$. Set

$$K = \begin{pmatrix} -1 + i & 1 \\ 0 & -1 + i \end{pmatrix}, \quad L = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}.$$

Then $K + K^* < -\frac{1}{2} I$. Then choosing a so that $|a|^2 < \frac{1}{2}$ ensures that $L^*L < \frac{1}{2} I < -(K + K^*)$. Thus the hypothesis of the above Theorem is satisfied. Therefore, if $L(X) = KX + XK^* + L^*XL$, $X \in B(\mathcal{H})$, then L must generate a stable Q.D.S. Actual computation shows that

$$L \left(\begin{pmatrix} x & y \\ z & w \end{pmatrix} \right) = \begin{pmatrix} (|a|^2 - 2)x + y + z \\ (|a|^2 - 2)y + w \\ (|a|^2 - 2)z + w \\ (|a|^2 - 2)w \end{pmatrix}.$$

So L may be represented by the 4×4 matrix

$$\begin{pmatrix} (|a|^2 - 2) & 1 & 1 & 0 \\ 0 & (|a|^2 - 2) & 0 & 1 \\ 0 & 0 & (|a|^2 - 2) & 1 \\ 0 & 0 & 0 & (|a|^2 - 2) \end{pmatrix}.$$
Some observations:

- The Q.D.S. \mathcal{T} is stable if and only if the family $(\mathcal{T}_t)_{t \geq 0}$ has the operator 0 as its only fixed point.
Some observations:

- The Q.D.S. \mathcal{T} is stable if and only if the family $(\mathcal{T}_t)_{t \geq 0}$ has the operator 0 as its only fixed point.
- For any $X \in B(\mathcal{H})$, if $s - \lim_{t \to \infty} \mathcal{T}_t(X)$ exists, then it is a fixed point, and every fixed point arises in this way.

Further, $C \in B(\mathcal{H})$ is a fixed point of the uniformly continuous QDS \mathcal{T} if and only if $L(C) = 0$. So, the set of fixed points $F(\mathcal{T}) = \{ X \in B(\mathcal{H}) : \mathcal{T}_t(X) = X, t \geq 0 \}$ is an object of interest. (For a single completely positive map, G. Popescu (2003), and for Markovian semigroups, Fagnola and Umanita have looked at the set $F(\mathcal{T})$.)
Fixed points

Some observations:

- The Q.D.S. T is stable if and only if the family $(T_t)_{t \geq 0}$ has the operator 0 as its only fixed point.
- For any $X \in B(H)$, if $\lim_{t \to \infty} T_t(X)$ exists, then it is a fixed point, and every fixed point arises in this way.
- Further, $C \in B(H)$ is a fixed point of the uniformly continuous QDS T if and only if $\mathcal{L}(C) = 0$.
- So, the set of fixed points
 \[\mathcal{F}(T) = \{ X \in B(H) : T_t(X) = X, t \geq 0 \}, \]
 is an object of interest.
 (For a single completely positive map, G. Popescu (2003), and for Markovian semigroups, Fagnola and Umanita have looked at the set $\mathcal{F}(T)$.)
Suppose that K, L_i are self adjoint operators in $B(\mathcal{H})$ and \mathcal{L} given by $\mathcal{L}(X) = KX + XK^* + \sum_i L_i XL_i^*$, $X \in B(\mathcal{H})$ generates a submarkovian quantum dynamical semigroup T. If $\ker K \neq \{0\}$, then for every $x_0 \in \ker K$, $C := |x_0\rangle\langle x_0|$ is a fixed point for T. Thus, T cannot be stable.
Theorem (...Bhat, 1996,..)

Every quantum dynamical semigroup on $B(\mathcal{H})$ admits a unique (upto unitary equivalence) minimal dilation consisting of e_0 semigroups.
Minimal dilations

Theorem (...Bhat, 1996,..)
Every quantum dynamical semigroup on $B(\mathcal{H})$ admits a unique (upto unitary equivalence) minimal dilation consisting of e_0 semigroups.

- Suppose $\mathcal{T} = \{T_t : t \geq 0\}$ is a quantum dynamical semigroup on $B(\mathcal{H})$. If $\hat{\mathcal{H}}$ is a Hilbert space containing H as a closed subspace.
Theorem (...)Bhat, 1996,..)

Every quantum dynamical semigroup on $B(\mathcal{H})$ admits a unique (upto unitary equivalence) minimal dilation consisting of e_0 semigroups.

- Suppose $\mathcal{T} = \{T_t : t \geq 0\}$ is a quantum dynamical semigroup on $B(\mathcal{H})$. If \mathcal{H} is a Hilbert space containing \mathcal{H} as a closed subspace.

- Let $\theta = \{\theta_t : t \geq 0\}$ is an e_0 semigroup on $B(\hat{\mathcal{H}})$,
Minimal dilations

Theorem (...Bhat, 1996,..)

Every quantum dynamical semigroup on $B(\mathcal{H})$ admits a unique (upto unitary equivalence) minimal dilation consisting of e_0 semigroups.

- Suppose $\mathcal{T} = \{T_t : t \geq 0\}$ is a quantum dynamical semigroup on $B(\mathcal{H})$. If $\hat{\mathcal{H}}$ is a Hilbert space containing \mathcal{H} as a closed subspace.
- Let $\theta = \{\theta_t : t \geq 0\}$ is an e_0 semigroup on $B(\hat{\mathcal{H}})$,
- that is, a quantum dynamical semigroup, consisting of \ast-endomorphisms of $B(\hat{\mathcal{H}})$,
Minimal dilations

Theorem (...Bhat, 1996,..)

Every quantum dynamical semigroup on \(B(\mathcal{H}) \) admits a unique (upto unitary equivalence) minimal dilation consisting of \(e_0 \) semigroups.

- Suppose \(\mathcal{T} = \{\mathcal{T}_t : t \geq 0\} \) is a quantum dynamical semigroup on \(B(\mathcal{H}) \). If \(\hat{\mathcal{H}} \) is a Hilbert space containing \(H \) as a closed subspace.
- Let \(\theta = \{\theta_t : t \geq 0\} \) is an \(e_0 \) semigroup on \(B(\hat{\mathcal{H}}) \),
- that is, a quantum dynamical semigroup, consisting of \(\ast \)-endomorphisms of \(B(\hat{\mathcal{H}}) \),
- satisfying,

\[
\mathcal{T}_t(X) = P\theta_t(X)P, \; t \geq 0, \; X \in B(\mathcal{H}) = PB(\hat{\mathcal{H}})P \subset B(\hat{\mathcal{H}}),
\]

where \(P \) is the orthogonal projection of \(\hat{\mathcal{H}} \) onto \(H \),
Minimal dilations

Theorem (...Bhat, 1996,..)

Every quantum dynamical semigroup on \(B(\mathcal{H}) \) admits a unique (upto unitary equivalence) minimal dilation consisting of \(e_0 \) semigroups.

- Suppose \(\mathcal{T} = \{\mathcal{T}_t : t \geq 0\} \) is a quantum dynamical semigroup on \(B(\mathcal{H}) \). If \(\hat{\mathcal{H}} \) is a Hilbert space containing \(\mathcal{H} \) as a closed subspace.
- Let \(\theta = \{\theta_t : t \geq 0\} \) is an \(e_0 \) semigroup on \(B(\hat{\mathcal{H}}) \),
- that is, a quantum dynamical semigroup, consisting of \(* \)-endomorphisms of \(B(\hat{\mathcal{H}}) \),
- satisfying,

\[
\mathcal{T}_t(X) = P\theta_t(X)P, \quad t \geq 0, \quad X \in B(\mathcal{H}) = PB(\hat{\mathcal{H}})P \subset B(\hat{\mathcal{H}}),
\]

where \(P \) is the orthogonal projection of \(\hat{\mathcal{H}} \) onto \(\mathcal{H} \),
- then \(\theta \) is called a dilation of \(\mathcal{T} \).
The dilation θ is said to be minimal if the closed linear span of
$$\{\theta_{r_1}(X_1)\ldots\theta_{r_n}(X_n)u : r_i \geq 0, X_i \in B(\mathcal{H}), u \in \mathcal{H}, 1 \leq i \leq n, n \geq 0\}$$
is all of $\hat{\mathcal{H}}$.
Theorem

If a quantum dynamical semigroup is stable, then its minimal dilation is also stable.
Theorem

Let \mathcal{T} be a uniformly continuous quantum dynamical semigroup on $B(\mathcal{H})$. A positive operator $C \in B(\mathcal{H})$ is a fixed point for \mathcal{T} if and only if there exists a quantum dynamical semigroup β on $B(\mathcal{H})$, such that $\beta_t(I) = I$, and

$$\mathcal{T}_t(C^{\frac{1}{2}}XC^{\frac{1}{2}}) = C^{\frac{1}{2}}\beta_t(X)C^{\frac{1}{2}}$$

for all $t \geq 0$ and $X \in B(\mathcal{H})$.
idea of proof

- Let $C \in B(\mathcal{H})$ satisfy $\mathcal{T}_t(C) = C$ for all $t \geq 0$ and θ be the minimal e_0 dilation of \mathcal{T} acting on $B(\hat{\mathcal{H}})$, where $\hat{\mathcal{H}}$ is a Hilbert space and $\mathcal{H} \subset \hat{\mathcal{H}}$.

Sachi Srivastava
Stability of Quantum Dynamical Semigroups and Fixed points
Let $C \in B(\mathcal{H})$ satisfy $T_t(C) = C$ for all $t \geq 0$ and θ be the minimal e_0 dilation of T acting on $B(\hat{\mathcal{H}})$, where $\hat{\mathcal{H}}$ is a Hilbert space and $\mathcal{H} \subset \hat{\mathcal{H}}$.

Let $\mathcal{K} := \text{Range}C^{\frac{1}{2}}$. For $t \geq 0$, define

$$W_t : \mathcal{K} \rightarrow \hat{\mathcal{H}}, \text{ by setting}$$

$$W_t(C^{\frac{1}{2}}h) = \theta_t(C^{\frac{1}{2}})h, \quad h \in \mathcal{H}.$$
idea of proof

Let $C \in B(\mathcal{H})$ satisfy $\mathcal{T}_t(C) = C$ for all $t \geq 0$ and θ be the minimal e_0 dilation of \mathcal{T} acting on $B(\hat{\mathcal{H}})$, where $\hat{\mathcal{H}}$ is a Hilbert space and $\mathcal{H} \subset \hat{\mathcal{H}}$.

Let $K := \text{Range} C^{\frac{1}{2}}$. For $t \geq 0$, define

$$W_t : K \rightarrow \hat{\mathcal{H}}, \text{ by setting}$$

$$W_t(C^{\frac{1}{2}}h) = \theta_t(C^{\frac{1}{2}})h, \ h \in H.$$

Define, for $t \geq 0$, $\gamma_t : B(\mathcal{K}) \rightarrow B(\mathcal{K})$ by

$$\gamma_t(X) = PW_t^* \theta_t(X) W_t P,$$

, for all $X \in B(\mathcal{K})$. Here $P := P_\mathcal{K}$ is the orthogonal projection of $\hat{\mathcal{H}}$ onto \mathcal{K}.
Let $C \in B(\mathcal{H})$ satisfy $\mathcal{T}_t(C) = C$ for all $t \geq 0$ and θ be the minimal e_0 dilation of \mathcal{T} acting on $B(\mathcal{H})$, where \mathcal{H} is a Hilbert space and $\mathcal{H} \subset \mathcal{H}$.

Let $\mathcal{K} := \text{Range}C^{\frac{1}{2}}$. For $t \geq 0$, define

$$W_t : \mathcal{K} \longrightarrow \mathcal{H}, \text{ by setting}$$

$$W_t(C^{\frac{1}{2}}h) = \theta_t(C^{\frac{1}{2}})h, h \in H.$$

Define, for $t \geq 0$, $\gamma_t : B(\mathcal{K}) \longrightarrow B(\mathcal{K})$ by

$$\gamma_t(X) = PW_t^* \theta_t(X) W_t P,$$

for all $X \in B(\mathcal{K})$. Here $P := P_K$ is the orthogonal projection of \mathcal{H} onto \mathcal{K}.

Extend $(\gamma_t)_{t \geq 0}$ to a quantum dynamical semigroup on $B(\mathcal{H})$.

Sachi Srivastava
Stability of Quantum Dynamical Semigroups and Fixed points
Theorem

Let $(T_t)_{t \geq 0}$ be an elementary quantum dynamical semigroup acting on $B(\mathcal{H})$ and let $(\theta_t)_{t \geq 0}$ be its minimal dilation acting on $B(\hat{\mathcal{H}})$. A positive operator $C \in B(\mathcal{H})$ is a fixed point of T for all $t \geq 0$, if and only if $C = P_\mathcal{H}D|\mathcal{H}$, where D is a positive fixed point of θ.

Sachi Srivastava
Stability of Quantum Dynamical Semigroups and Fixed points
Idea of proof

Use a commutant lifting theorem for contractive strongly continuous semigroups:

Theorem

Let \((R_t)_{t \geq 0}\) and \((S_t)_{t \geq 0}\) be two strongly continuous contraction semigroups acting on the Hilbert spaces \(\mathcal{H}\) and \(\mathcal{K}\) respectively. Suppose that \((V_t)_{t \geq 0}\) and \((W_t)_{t \geq 0}\) are the respective minimal isometric dilations acting on the Hilbert spaces \(\hat{\mathcal{H}}\) and \(\hat{\mathcal{K}}\). If a bounded operator \(C : \mathcal{H} \to \mathcal{K}\) satisfies \(CR_t = S_t C, \ t \geq 0\) then there exists an operator \(\hat{C} : \hat{\mathcal{H}} \to \hat{\mathcal{K}}\) such that \(\hat{C} V_t = W_t \hat{C}, \ t \geq 0\) and \(\|\hat{C}\| = \|C\|, P_\mathcal{H} \hat{C} |_\mathcal{H} = C\).
Idea of proof

- Use a commutant lifting theorem for contractive strongly continuous semigroups:

Theorem

Let \((R_t)_{t \geq 0}\) and \((S_t)_{t \geq 0}\) be two strongly continuous contraction semigroups acting on the Hilbert spaces \(\mathcal{H}\) and \(\mathcal{K}\) respectively. Suppose that \((V_t)_{t \geq 0}\) and \((W_t)_{t \geq 0}\) are the respective minimal isometric dilations acting on the Hilbert spaces \(\hat{\mathcal{H}}\) and \(\hat{\mathcal{K}}\). If a bounded operator \(C : \mathcal{H} \rightarrow \mathcal{K}\) satisfies \(CR_t = S_t C, \ t \geq 0\) then there exists an operator \(\hat{C} : \hat{\mathcal{H}} \rightarrow \hat{\mathcal{K}}\) such that \(\hat{C}V_t = W_t \hat{C}, \ t \geq 0\) and \(\|\hat{C}\| = \|C\|, P_{\mathcal{H}} \hat{C} |_{\mathcal{H}} = C\).

- and the ”intertwining theorem”
Theorem

Let \((T_t)_{t \geq 0}\) be a quantum dynamical semigroup acting on \(B(\mathcal{H})\) and let \((\theta_t)_{t \geq 0}\) be its minimal dilation acting on \(B(\hat{\mathcal{H}})\). A positive, invertible operator \(C \in B(\mathcal{H})\) is a fixed point of \(T_t\) for all \(t \geq 0\), if and only if \(C = P_\mathcal{H}D|\mathcal{H}\), where \(D\) is a positive, invertible fixed point of \(\theta_t\), \(t \geq 0\), such that \(\|C\| = \|D\|\).
References

