Evolutionary Equations with Frictional Boundary Conditions.

Sascha Trostorff

Technische Universität Dresden

03.06.2013–07.06.2013, Herrnhut
Elasticity with frictional boundary conditions

Framework

Boundary conditions

Back to elasticity
Elasticity with frictional boundary conditions

Framework

Boundary conditions

Back to elasticity
The equations

Consider an elastic body $\Omega \subseteq \mathbb{R}^3$. We denote by $u : \mathbb{R} \to L_2(\Omega)^3$ the displacement field and by $\sigma : \mathbb{R} \to L_{2,sym}(\Omega)^{3 \times 3}$ the stress tensor field. The equations of elasticity read as

$$\partial_0^2 u - \text{Div} \sigma = f,$$
$$\sigma = C \text{Grad} u,$$

(1)
The equations

Consider an elastic body $\Omega \subseteq \mathbb{R}^3$. We denote by $u : \mathbb{R} \to L_2(\Omega)^3$ the displacement field and by $\sigma : \mathbb{R} \to L_{2,\text{sym}}(\Omega)^{3 \times 3}$ the stress tensor field. The equations of elasticity read as

$$\begin{aligned}
\partial_0^2 u - \text{Div}\sigma &= f, \\
\sigma &= C \text{Grad}\,u,
\end{aligned}$$

(1)

where $\text{Div}\sigma = \left(\sum_{j=1}^{3} \partial_j \sigma_{ij}\right)_i$ and $\text{Grad}\,u = \frac{1}{2}(\partial_i u_j + \partial_j u_i)_{i,j}$. The operator $C : L_{2,\text{sym}}(\Omega)^{3 \times 3} \to L_{2,\text{sym}}(\Omega)^{3 \times 3}$ is assumed to be selfadjoint and strictly positive definite.
The equations

Consider an elastic body \(\Omega \subseteq \mathbb{R}^3 \). We denote by \(u : \mathbb{R} \to L_2(\Omega)^3 \) the displacement field and by \(\sigma : \mathbb{R} \to L_{2,\text{sym}}(\Omega)^{3 \times 3} \) the stress tensor field. The equations of elasticity read as

\[
\partial_0^2 u - \text{Div} \sigma = f, \\
\sigma = C \text{Grad} u,
\]

where \(\text{Div} \sigma = (\sum_{j=1}^3 \partial_j \sigma_{ij})_i \) and \(\text{Grad} u = \frac{1}{2}(\partial_i u_j + \partial_j u_i)_{i,j} \). The operator \(C : L_{2,\text{sym}}(\Omega)^{3 \times 3} \to L_{2,\text{sym}}(\Omega)^{3 \times 3} \) is assumed to be selfadjoint and strictly positive definite. We write this as an first order system. Set \(v := \partial_0 u \). Then (1) can be written as

\[
\begin{pmatrix}
\partial_0 \left(\begin{array}{cc} 1 & 0 \\ 0 & C^{-1} \end{array} \right) + \left(\begin{array}{cc} 0 & -\text{Div} \\ -\text{Grad} & 0 \end{array} \right) \\
\end{pmatrix}
\begin{pmatrix}
v \\
\sigma \end{pmatrix}
=
\begin{pmatrix}
f \\
0 \end{pmatrix}.
\]
Boundary conditions

We consider the following frictional boundary condition (Coulomb’s law for unilateral contact):

\[\sigma_n (x) \cdot n = F_n (x) \]
\[| \sigma_n (x) \cdot t | < g (x) \Rightarrow v_t (x) = 0 \]
\[| \sigma_n (x) \cdot t | = g (x) \Rightarrow \exists \lambda \geq 0 : v_t (x) = - \lambda \sigma_n (x) \cdot t \]
Boundary conditions

We consider the following frictional boundary condition (Coulomb’s law for unilateral contact):
Denote by $n : \partial \Omega \rightarrow \mathbb{R}^3$ the unit outward normal vector field on $\partial \Omega$. For a vector field $w \in L_2(\partial \Omega)^3$ we define the decomposition

$$w_n := \langle w | n \rangle n \text{ and } w_t = w - w_n.$$
Boundary conditions

We consider the following frictional boundary condition (Coulomb’s law for unilateral contact):
Denote by \(n : \partial \Omega \to \mathbb{R}^3 \) the unit outward normal vector field on \(\partial \Omega \). For a vector field \(w \in L_2(\partial \Omega)^3 \) we define the decomposition

\[
\begin{align*}
 w_n &:= \langle w | n \rangle n \quad \text{and} \quad w_t = w - w_n.
\end{align*}
\]

Let \(g \in L_2(\partial \Omega) \) attaining positive (real) values and \(F_n \in L_2(\partial \Omega)^3 \). Then the boundary condition reads as

\[
\begin{align*}
 (\sigma n)_n(x) &= F_n(x) \\
 |(\sigma n)_t(x)| &< g(x) \Rightarrow v_t(x) = 0 \\
 |(\sigma n)_t(x)| &= g(x) \Rightarrow \exists \lambda \geq 0 : v_t(x) = -\lambda (\sigma n)_t(x).
\end{align*}
\]
The relation h

$$\begin{align*}
\sigma_n(x) &= F_n(x) \\
|\sigma_t(x)| &< g(x) \Rightarrow \nu_t(x) = 0 \\
|\sigma_t(x)| &= g(x) \Rightarrow \exists \lambda \geq 0 : \nu_t(x) = -\lambda \sigma_t(x). \quad (2)
\end{align*}$$

Define the following relation on $L_2(\partial \Omega)^3$:

$$h := \{(x, y) \mid y_n = F_n, |y_t| \leq g, \Re \langle x_t | y_t \rangle = g |x_t| \text{ a.e.}\}.$$
The relation h

\[(\sigma n)_n(x) = F_n(x)\]
\[|(\sigma n)_t(x)| < g(x) \Rightarrow v_t(x) = 0\]
\[|(\sigma n)_t| = g(x) \Rightarrow \exists \lambda \geq 0 : v_t(x) = -\lambda(\sigma n)_t(x). \quad (2)\]

Define the following relation on $L_2(\partial \Omega)^3$:

\[h := \{(x, y) \mid y_n = F_n, \ |y_t| \leq g, \Re \langle x_t | y_t \rangle = g|x_t| \text{ a.e.}\}.\]

Then the boundary conditions (2) are equivalent to $(v, \sigma n) \in h$.
The relation h

\[(\sigma n)_n(x) = F_n(x)\]

\[|(\sigma n)_t(x)| < g(x) \Rightarrow v_t(x) = 0\]

\[|(\sigma n)_t| = g(x) \Rightarrow \exists \lambda \geq 0 : v_t(x) = -\lambda(\sigma n)_t(x). \] (2)

Define the following relation on $L_2(\partial \Omega)^3$:

\[h := \{(x, y) \mid y_n = F_n, |y_t| \leq g, \Re \langle x_t | y_t \rangle = g |x_t| \text{ a.e.}\}.\]

Then the boundary conditions (2) are equivalent to $(v, \sigma n) \in h$.

Lemma

The relation h is monotone, i.e. for every $(u, v), (x, y) \in h$ the estimate

\[\Re \langle u - x | v - y \rangle \geq 0\]

holds.
The relation h

$h := \{(x, y) | y_n = F_n, |y_t| \leq g, \Re \langle x_t | y_t \rangle = g|x_t| \text{ a.e.}\}$.

Proof.

For $(u, v), (x, y) \in h$ we estimate

$$\Re \langle u - x | v - y \rangle = \Re \langle u_t - x_t | v_t - y_t \rangle$$
The relation h

$$h := \{ (x, y) \mid y_n = F_n, \ |y_t| \leq g, \Re \langle x_t | y_t \rangle = g |x_t| \text{ a.e.} \}.$$

Proof.

For $(u, \nu), (x, y) \in h$ we estimate

$$\Re \langle u - x | \nu - y \rangle = \Re \langle u_t - x_t | \nu_t - y_t \rangle$$

$$= g(|u_t| + |x_t|) - (\Re \langle x_t | \nu_t \rangle + \Re \langle u_t | y_t \rangle)$$
The relation h

$$h := \{(x, y) \mid y_n = F_n, |y_t| \leq g, \Re \langle x_t | y_t \rangle = g |x_t| \text{ a.e.}\}.$$

Proof.

For $(u, v), (x, y) \in h$ we estimate

$$\Re \langle u - x | v - y \rangle = \Re \langle u_t - x_t | v_t - y_t \rangle = g(|u_t| + |x_t|) - (\Re \langle x_t | v_t \rangle + \Re \langle u_t | y_t \rangle) \geq g(|u_t| + |x_t|) - g(|u_t| + |x_t|)$$
The relation h

\[h := \{ (x, y) \mid y_n = F_n, \ |y_t| \leq g, \ \Re\langle x_t | y_t \rangle = g |x_t| \ \text{a.e.} \}. \]

Proof.
For $(u, v), (x, y) \in h$ we estimate

\[
\Re\langle u - x | v - y \rangle = \Re\langle u_t - x_t | v_t - y_t \rangle \\
= g(|u_t| + |x_t|) - (\Re\langle x_t | v_t \rangle + \Re\langle u_t | y_t \rangle) \\
\geq g(|u_t| + |x_t|) - g(|u_t| + |x_t|) \\
= 0,
\]

by Cauchy-Schwarz.
The relation h

$$h := \{(x, y) \mid y_n = F_n, \ |y_t| \leq g, \Re \langle x_t | y_t \rangle = g|x_t| \text{ a.e.} \}.$$

Proof.
For $(u, v), (x, y) \in h$ we estimate

$$\Re \langle u - x | v - y \rangle = \Re \langle u_t - x_t | v_t - y_t \rangle$$

$$= g(\|u_t\| + \|x_t\|) - (\Re \langle x_t | v_t \rangle + \Re \langle u_t | y_t \rangle)$$

$$\geq g(\|u_t\| + \|x_t\|) - g(\|u_t\| + \|x_t\|)$$

$$= 0,$$

by Cauchy-Schwarz.

Lemma

The relation $1 + h$ is onto, i.e. for every $f \in L_2(\partial \Omega)^3$ there exists $(x, y) \in h$ such that $x + y = f$.

The relation h

$$h := \{(x, y) \mid y_n = F_n, \left| y_t \right| \leq g, \Re \langle x_t | y_t \rangle = g |x_t| \text{ a.e.}\}.$$

Proof.

(a) $|f_t| \leq g$:

(b) $|f_t| > g$:
The relation h

$$h := \{(x, y) \mid y_n = F_n, \ |y_t| \leq g, \Re \langle x_t | y_t \rangle = g |x_t| \text{ a.e.} \}.$$

Proof.

(a) $|f_t| \leq g$: Then we set $x_n = f_n - F_n$, $y_n = F_n$ and $y_t = f_t$, $x_t = 0$.

(b) $|f_t| > g$:

Corollary: The relation h is maximal monotone.
The relation h

$$h := \{(x, y) \mid y_n = F_n, |y_t| \leq g, \Re \langle x_t | y_t \rangle = g|x_t| \text{ a.e.}\}.$$

Proof.

(a) $|f_t| \leq g$: Then we set $x_n = f_n - F_n$, $y_n = F_n$ and $y_t = f_t$, $x_t = 0$.

(b) $|f_t| > g$: Then we set $x_n = f_n - F_n$, $y_n = F_n$ and $y_t = g \frac{f_t}{|f_t|}$, $x_t = f_t - y_t = (1 - g \frac{1}{|f_t|})f_t$.

Corollary

The relation h is maximal monotone.
The relation h

$$h := \{(x, y) | y_n = F_n, |y_t| \leq g, \Re\langle x_t | y_t \rangle = g|x_t| \text{ a.e.}\}.$$

Proof.

(a) $|f_t| \leq g$: Then we set $x_n = f_n - F_n$, $y_n = F_n$ and $y_t = f_t$, $x_t = 0$.

(b) $|f_t| > g$: Then we set $x_n = f_n - F_n$, $y_n = F_n$ and $y_t = g\frac{f_t}{|f_t|}$, $x_t = f_t - y_t = (1 - g\frac{1}{|f_t|})f_t$. Then

$$\Re\langle x_t | y_t \rangle = \frac{g}{|f_t|} \left(1 - g\frac{1}{|f_t|}\right) |f_t|^2 = g|x_t|. $$
The relation h

$h := \{(x, y) \mid y_n = F_n, \, |y_t| \leq g, \, \Re\langle x_t | y_t \rangle = g |x_t| \text{ a.e.}\}.$

Proof.

(a) $|f_t| \leq g$: Then we set $x_n = f_n - F_n$, $y_n = F_n$ and $y_t = f_t$, $x_t = 0$.

(b) $|f_t| > g$: Then we set $x_n = f_n - F_n$, $y_n = F_n$ and $y_t = g \frac{f_t}{|f_t|}$, $x_t = f_t - y_t = (1 - g \frac{1}{|f_t|}) f_t$. Then

$$\Re\langle x_t | y_t \rangle = \frac{g}{|f_t|} \left(1 - g \frac{1}{|f_t|} \right) |f_t|^2 = g |x_t|.$$

Corollary

The relation h is \textit{maximal monotone}.
Problem setting

Recall the equation of elasticity:

\[
\left(\partial_0 \begin{pmatrix} 1 & 0 \\ 0 & C^{-1} \end{pmatrix} + \begin{pmatrix} 0 & -\text{Div} \\ -\text{Grad} & 0 \end{pmatrix} \right) \begin{pmatrix} \nu \\ \sigma \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}.
\]
Problem setting

Recall the equation of elasticity:

\[
\left(\partial_0 \begin{pmatrix} 1 & 0 \\ 0 & C^{-1} \end{pmatrix} + \begin{pmatrix} 0 & -\text{Div} \\ -\text{Grad} & 0 \end{pmatrix} \right) \begin{pmatrix} v \\ \sigma \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}.
\]

In order to deal with the frictional boundary conditions, we have to consider the (nonlinear) restriction

\[A \subseteq \begin{pmatrix} 0 & -\text{Div} \\ -\text{Grad} & 0 \end{pmatrix} \]

with domain

\[\mathcal{D}(A) := \{ (v, \sigma) \mid v \in \mathcal{D}(\text{Grad}), \sigma \in \mathcal{D}(\text{Div}), (v, \sigma n) \in h \}. \]
Elasticity with frictional boundary conditions

Framework

Boundary conditions

Back to elasticity

Sascha Trostorff

Technische Universität Dresden

Evolutionary Equations with Frictional Boundary Conditions.
Time derivative

Let H be a Hilbert space. For $\rho > 0$ we denote by $H_{\rho,0}(\mathbb{R}; H)$ the L^2-space defined as the completion of $C^\infty_c(\mathbb{R}; H)$ with respect to the inner product

$$\langle \phi | \psi \rangle_{H_{\rho,0}(\mathbb{R}; H)} := \int_{\mathbb{R}} \langle \phi(t) | \psi(t) \rangle_H \exp(-2\rho t) \, dt.$$
Time derivative

Let H be a Hilbert space. For $\rho > 0$ we denote by $H_{\rho,0}(\mathbb{R}; H)$ the L_2-space defined as the completion of $C_c^\infty(\mathbb{R}; H)$ with respect to the inner product

$$\langle \phi | \psi \rangle_{H_{\rho,0}(\mathbb{R}; H)} := \int_{\mathbb{R}} \langle \phi(t) | \psi(t) \rangle_H \exp(-2\rho t) \, dt.$$

We denote by $\partial_{0,\rho}$ the derivative on $H_{\rho,0}(\mathbb{R}; H)$, defined as the closure of

$$C_c^\infty(\mathbb{R}; H) \subseteq H_{\rho,0}(\mathbb{R}; H) \rightarrow H_{\rho,0}(\mathbb{R}; H) \quad \phi \mapsto \phi'.$$
Time derivative

Let H be a Hilbert space. For $\rho > 0$ we denote by $H_{\rho,0}(\mathbb{R}; H)$ the L_2-space defined as the completion of $C_c^\infty(\mathbb{R}; H)$ with respect to the inner product

$$\langle \phi | \psi \rangle_{H_{\rho,0}(\mathbb{R}; H)} := \int_{\mathbb{R}} \langle \phi(t) | \psi(t) \rangle_H \exp(-2\rho t) \, dt.$$

We denote by $\partial_{0,\rho}$ the derivative on $H_{\rho,0}(\mathbb{R}; H)$, defined as the closure of

$$C_c^\infty(\mathbb{R}; H) \subseteq H_{\rho,0}(\mathbb{R}; H) \rightarrow H_{\rho,0}(\mathbb{R}; H) \quad \phi \mapsto \phi'.$$

Then $\partial_{0,\rho}$ is a normal operator with $\Re \partial_{0,\rho} = \rho$. In particular, $\partial_{0,\rho}$ is boundedly invertible.
Maximal monotone relations

Let $A \subseteq H \oplus H$ be a binary relation. Then A is called monotone, if

$$\forall (u, v), (x, y) \in A : \Re \langle u - x | v - y \rangle_H \geq 0.$$
Maximal monotone relations

Let \(A \subseteq H \oplus H \) be a binary relation. Then \(A \) is called \textit{monotone}, if

\[
\forall (u, v), (x, y) \in A : \Re \langle u - x | v - y \rangle_H \geq 0.
\]

\(A \) is called \textit{maximal monotone}, if it is monotone and there exists no proper monotone extension, i.e. for every monotone \(B \subseteq H \oplus H \) with \(A \subseteq B \) it follows that \(A = B \).
Maximal monotone relations

Let $A \subseteq H \oplus H$ be a binary relation. Then A is called monotone, if

$$\forall (u, v), (x, y) \in A : \Re \langle u - x | v - y \rangle_H \geq 0.$$

A is called maximal monotone, if it is monotone and there exists no proper monotone extension, i.e. for every monotone $B \subseteq H \oplus H$ with $A \subseteq B$ it follows that $A = B$.

Theorem (Minty, 1962)

Let $A \subseteq H \oplus H$ be monotone. TFAE

(i) A is maximal monotone,
Maximal monotone relations

Let $A \subseteq H \oplus H$ be a binary relation. Then A is called monotone, if

$$\forall (u, v), (x, y) \in A : \Re \langle u - x | v - y \rangle_H \geq 0.$$

A is called maximal monotone, if it is monotone and there exists no proper monotone extension, i.e. for every monotone $B \subseteq H \oplus H$ with $A \subseteq B$ it follows that $A = B$.

Theorem (Minty, 1962)

Let $A \subseteq H \oplus H$ be monotone. TFAE

(i) A is maximal monotone,

(ii) there is $\lambda > 0$ such that $1 + \lambda A$ is onto (i.e. $\forall z \in H \exists (x, y) \in A : x + \lambda y = z$).
Maximal monotone relations

Let $A \subseteq H \oplus H$ be a binary relation. Then A is called \textit{monotone}, if

$$\forall (u, v), (x, y) \in A : \mathbb{R} \langle u - x | v - y \rangle_H \geq 0.$$

A is called \textit{maximal monotone}, if it is monotone and there exists no proper monotone extension, i.e. for every monotone $B \subseteq H \oplus H$ with $A \subseteq B$ it follows that $A = B$.

\textbf{Theorem (Minty, 1962)}

\textit{Let $A \subseteq H \oplus H$ be monotone. TFAE}

\begin{enumerate}
 \item A is maximal monotone,
 \item there is $\lambda > 0$ such that $1 + \lambda A$ is onto (i.e. $\forall z \in H \exists (x, y) \in A : x + \lambda y = z$),
 \item for all $\lambda > 0$ the relation $1 + \lambda A$ is onto.
\end{enumerate}
Evolutionary inclusions

Throughout let $M_0, M_1 \in L(H)$, M_0 selfadjoint and strictly positive definite on its range and $\mathcal{R}M_1$ strictly positive definite on the kernel of M_0.

Evolutionary inclusions

Throughout let $M_0, M_1 \in L(H)$, M_0 selfadjoint and strictly positive definite on its range and $\Re M_1$ strictly positive definite on the kernel of M_0.

Lemma

There exists $\rho_0, c > 0$ *such that for every* $\rho \geq \rho_0$ *the operator* $\partial_{\rho} M_0 + M_1 - c$ *is maximal monotone on* $H_{\rho,0}(\mathbb{R}; H)$.
Evolutionary inclusions

Throughout let $M_0, M_1 \in L(H)$, M_0 selfadjoint and strictly positive definite on its range and $\Re M_1$ strictly positive definite on the kernel of M_0.

Lemma

There exists $\rho_0, c > 0$ such that for every $\rho \geq \rho_0$ the operator $\partial_{0,\rho} M_0 + M_1 - c$ is maximal monotone on $H_{\rho,0}(\mathbb{R}; H)$.

Theorem (Solution Theory)

Let $\rho \geq \rho_0$, $A \subseteq H_{\rho,0}(\mathbb{R}; H) \oplus H_{\rho,0}(\mathbb{R}; H)$ be maximal monotone and autonomous (i.e. $(u, v) \in A \Rightarrow \forall h \in \mathbb{R} : (\tau_h u, \tau_h v) \in A$). Then

$\left(\partial_{0,\rho} M_0 + M_1 + A\right)^{-1} : H_{\rho,0}(\mathbb{R}; H) \to H_{\rho,0}(\mathbb{R}; H)$

is a Lipschitz-continuous, causal mapping.
Elasticity with frictional boundary conditions

Framework

Boundary conditions

Back to elasticity
Boundary data spaces

Let H_0, H_1 be Hilbert spaces and $\hat{G} : \mathcal{D}(\hat{G}) \subseteq H_0 \to H_1$ and $\hat{D} : \mathcal{D}(\hat{D}) \subseteq H_1 \to H_0$ be densely defined, closed linear operators with

$$\hat{G} \subseteq - (\hat{D})^* =: G \text{ and } \hat{D} \subseteq - (\hat{G})^* =: D.$$
Boundary data spaces

Let H_0, H_1 be Hilbert spaces and $\hat{\mathcal{G}} : \mathcal{D}(\hat{\mathcal{G}}) \subseteq H_0 \to H_1$ and $\hat{\mathcal{D}} : \mathcal{D}(\hat{\mathcal{D}}) \subseteq H_1 \to H_0$ be densely defined, closed linear operators with
\[
\mathcal{G} \subseteq - (\mathcal{D})^* =: G \quad \text{and} \quad \mathcal{D} \subseteq - (\mathcal{G})^* =: D.
\]

Example

Set $H_0 = L_2(\Omega)$ and $H_1 = L_2(\Omega)^n$, $\hat{\mathcal{G}} = \text{grad}$ with domain $\overset{\mathcal{D}\text{grad}}{\overline{C_c^\infty(\Omega)}}$ and $\hat{\mathcal{D}} = \text{div}$ with domain $\overset{\mathcal{D}\text{div}}{\overline{C_c^\infty(\Omega)^n}}$.
Boundary data spaces

Let H_0, H_1 be Hilbert spaces and $\hat{G} : \mathcal{D}(\hat{G}) \subseteq H_0 \rightarrow H_1$ and $\hat{D} : \mathcal{D}(\hat{D}) \subseteq H_1 \rightarrow H_0$ be densely defined, closed linear operators with $\hat{G} \subseteq - (\hat{D})^* =: G$ and $\hat{D} \subseteq - (\hat{G})^* =: D$.

Example

Set $H_0 = L_2(\Omega)$ and $H_1 = L_2(\Omega)^n$, $\hat{G} = \text{grad}$ with domain $\overline{C_c^\infty(\Omega)}^{\mathcal{D}_{\text{grad}}}$ and $\hat{D} = \text{div}$ with domain $\overline{C_c^\infty(\Omega)}^{\mathcal{D}_{\text{div}}}$. Then $G = \text{grad}$ with domain $\{ f \in L_2(\Omega) \mid \text{grad} f \in L_2(\Omega)^n \}$ and $D = \text{div}$ with domain $\{ \Phi \in L_2(\Omega)^n \mid \text{div} \Phi \in L_2(\Omega) \}$.
Boundary data spaces

We decompose \mathcal{D}_G and \mathcal{D}_D in the orthogonal subspaces

\[
\mathcal{D}_G = \mathcal{D}_\mathcal{G} \oplus \mathcal{BD}(G) \\
\mathcal{D}_D = \mathcal{D}_\mathcal{D} \oplus \mathcal{BD}(D).
\]
Boundary data spaces

We decompose \mathcal{D}_G and \mathcal{D}_D in the orthogonal subspaces

$$\mathcal{D}_G = \mathcal{D}_\ddot{G} \oplus \mathcal{B\mathcal{D}}(G)$$
$$\mathcal{D}_D = \mathcal{D}_\ddot{D} \oplus \mathcal{B\mathcal{D}}(D).$$

We denote the restrictions of G and D to $\mathcal{B\mathcal{D}}(G)$ and $\mathcal{B\mathcal{D}}(D)$ by \dot{G} and \dot{D}, respectively.
Boundary data spaces

We decompose \mathcal{D}_G and \mathcal{D}_D in the orthogonal subspaces

$$\mathcal{D}_G = \mathcal{D}_G \oplus \mathcal{B}\mathcal{D}(G)$$
$$\mathcal{D}_D = \mathcal{D}_D \oplus \mathcal{B}\mathcal{D}(D).$$

We denote the restrictions of G and D to $\mathcal{B}\mathcal{D}(G)$ and $\mathcal{B}\mathcal{D}(D)$ by \dot{G} and \dot{D}, respectively.

Lemma

The operators $\dot{G}: \mathcal{B}\mathcal{D}(G) \to \mathcal{B}\mathcal{D}(D)$ and $\dot{D}: \mathcal{B}\mathcal{D}(D) \to \mathcal{B}\mathcal{D}(G)$ are unitary with $(\dot{G})^* = \dot{D}$ and $(\dot{D})^* = \dot{G}$.
The operator A

Let $h \subseteq H_{\rho,0}(\mathbb{R}; BD(G)) \oplus H_{\rho,0}(\mathbb{R}; BD(G))$ be an autonomous, maximal monotone relation.
The operator A

Let $h \subseteq H_{\rho,0}(\mathbb{R}; BD(G)) \oplus H_{\rho,0}(\mathbb{R}; BD(G))$ be an autonomous, maximal monotone relation. We consider the operator

$$A \subseteq \begin{pmatrix} 0 & D \\ G & 0 \end{pmatrix}$$
The operator A

Let $h \subseteq H_{\rho,0}(\mathbb{R}; \mathcal{BD}(G)) \oplus H_{\rho,0}(\mathbb{R}; \mathcal{BD}(G))$ be an autonomous, maximal monotone relation. We consider the operator

$$A \subseteq \begin{pmatrix} 0 & D \\ G & 0 \end{pmatrix}$$

with domain

$$\{(u, v) \in H_{\rho,0}(\mathbb{R}; \mathcal{D}_G) \oplus H_{\rho,0}(\mathbb{R}; \mathcal{D}_D) \mid (\pi_{\mathcal{BD}(G)}u, \dot{D} \pi_{\mathcal{BD}(D)}v) \in h \}.$$
The operator A

Let $h \subseteq H_{\rho,0}(\mathbb{R}; BD(G)) \oplus H_{\rho,0}(\mathbb{R}; BD(G))$ be an autonomous, maximal monotone relation. We consider the operator

$$A \subseteq \begin{pmatrix} 0 & D \\ G & 0 \end{pmatrix}$$

with domain

$$\{(u, v) \in H_{\rho,0}(\mathbb{R}; D_G) \oplus H_{\rho,0}(\mathbb{R}; D_D) | (\pi_{BD(G)}u, \dot{D} \pi_{BD(D)}v) \in h}\}.$$

Theorem

The (nonlinear) operator A is autonomous and maximal monotone.
Sketch of Proof

A straight forward computation yields that A is monotone and autonomous.
Sketch of Proof

A straightforward computation yields that A is monotone and autonomous. Moreover, A is closed.
Sketch of Proof

A straightforward computation yields that A is monotone and autonomous. Moreover, A is closed.

In order to show the maximal monotonicity, it suffices to prove that $1 + A$ has a dense range. For doing so, let $f \in H_{\rho,0}(\mathbb{R}; \mathcal{D}_G)$ and $g \in H_{\rho,0}(\mathbb{R}; \mathcal{D}_D)$ and define

$$\tilde{u} := (1 - D\hat{G})^{-1}f - D(1 - \hat{G}D)^{-1}g \in H_{\rho,0}(\mathbb{R}; \mathcal{D}_{D\hat{G}})$$

$$\tilde{v} := (1 - \hat{G}D)^{-1}g - \hat{G}(1 - D\hat{G})^{-1}f \in H_{\rho,0}(\mathbb{R}; \mathcal{D}_D).$$
Sketch of Proof

A straightforward computation yields that A is monotone and autonomous. Moreover, A is closed. In order to show the maximal monotonicity, it suffices to prove that $1 + A$ has a dense range. For doing so, let $f \in H_{\rho,0}(\mathbb{R}; D_{\hat{G}})$ and $g \in H_{\rho,0}(\mathbb{R}; D_{\hat{D}})$ and define

$$\tilde{u} := (1 - D\hat{G})^{-1}f - D(1 - \hat{G}D)^{-1}g \in H_{\rho,0}(\mathbb{R}; D_{D\hat{G}})$$

$$\tilde{v} := (1 - \hat{G}D)^{-1}g - \hat{G}(1 - D\hat{G})^{-1}f \in H_{\rho,0}(\mathbb{R}; D_{D}).$$

Then

$$\tilde{u} + D\tilde{v} = f$$

$$\tilde{v} + \hat{G}\tilde{u} = g.$$
Moreover, we set

\[u := \nu_{BD(G)} (1 + h)^{-1} \left(- \dot{D} \pi_{BD(D)} \dot{G} \tilde{u} \right) + \tilde{u} \in H_{\rho,0}(\mathbb{R}; \mathcal{D}_G) \]

\[\nu := -\nu_{BD(D)} \dot{G} (1 + h)^{-1} \left(- \dot{D} \pi_{BD(D)} \dot{G} \tilde{u} \right) + \tilde{\nu} \in H_{\rho,0}(\mathbb{R}; \mathcal{D}_D) \]
Moreover, we set

\[u := \nu_{BD}(G)(1 + h)^{-1} \left(- \dot{\nu} \pi_{BD}(D) \tilde{G} \tilde{u}\right) + \tilde{u} \in H_{\rho,0}(\mathbb{R}; D_G) \]

\[v := -\nu_{BD}(D) \dot{G} (1 + h)^{-1} \left(- \dot{\nu} \pi_{BD}(D) \tilde{G} \tilde{u}\right) + \tilde{v} \in H_{\rho,0}(\mathbb{R}; D_D) \]

Then

\[u + Dv = \tilde{u} + D\tilde{v} = f \]

\[u + Gv = \tilde{v} + G\tilde{u} = g. \]
Moreover, we set

\[u := \iota_{\mathcal{BD}(D)}(1 + h)^{-1} \left(- \dot{\mathcal{D}} \pi_{\mathcal{BD}(D)} \hat{G} \tilde{u}\right) + \tilde{u} \in H_{\rho,0}(\mathbb{R}; \mathcal{D}_\mathcal{G}) \]

\[v := -\iota_{\mathcal{BD}(D)} \hat{G} (1 + h)^{-1} \left(- \dot{\mathcal{D}} \pi_{\mathcal{BD}(D)} \hat{G} \tilde{u}\right) + \tilde{v} \in H_{\rho,0}(\mathbb{R}; \mathcal{D}_\mathcal{D}) \]

Then

\[u + Dv = \tilde{u} + D\tilde{v} = f \]

\[u + Gv = \tilde{v} + G\tilde{u} = g. \]

Moreover, one can show that

\[\pi_{\mathcal{BD}(G)}u = (1 + h)^{-1} \left(\dot{\mathcal{D}} \pi_{\mathcal{BD}(D)} v + \pi_{\mathcal{BD}(G)}u \right), \]

which yields \((\pi_{\mathcal{BD}(G)}, \dot{\mathcal{D}} \pi_{\mathcal{BD}(D)} v) \in h\).
Elasticity with frictional boundary conditions

Framework

Boundary conditions

Back to elasticity
Recall the example

\[
\begin{pmatrix}
\partial_0
& \begin{pmatrix}
1 & 0 \\
0 & C^{-1} \\
\end{pmatrix} \\
\end{pmatrix} + A \begin{pmatrix}
\nu \\
\sigma \\
\end{pmatrix} = \begin{pmatrix}
f \\
0 \\
\end{pmatrix},
\]

where

\[
A \subseteq \begin{pmatrix}
0 & -\text{Div} \\
-\text{Grad} & 0 \\
\end{pmatrix}
\]

\[
\mathcal{D}(A) := \{(\nu, \sigma) | \nu \in \mathcal{D}(\text{Grad}), \sigma \in \mathcal{D}(\text{Div}), (\nu, \sigma n) \in h\},
\]

and \(h \) is maximal monotone on \(L^2(\partial \Omega)^3 \).
Recall the example

\[
\left(\partial_0 \begin{pmatrix} 1 & 0 \\ 0 & C^{-1} \end{pmatrix} + A \right) \begin{pmatrix} \nu \\ \sigma \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix},
\]

where

\[
A \subseteq \begin{pmatrix} 0 & -\text{Div} \\ -\text{Grad} & 0 \end{pmatrix}
\]

\[
\mathcal{D}(A) := \{(\nu, \sigma) \mid \nu \in \mathcal{D}(\text{Grad}), \sigma \in \mathcal{D}(\text{Div}), (\nu, \sigma n) \in h\},
\]

and \(h\) is maximal monotone on \(L_2(\partial \Omega)^3\). Using the terminology above, we set \(G := -\text{Grad}\) and \(D := -\text{Div}\). In case of a smooth boundary, there exists a continuous embedding

\[
i : \mathcal{BD}(\text{Grad}) \to L_2(\partial \Omega)^3.
\]
Then the boundary condition can be reformulated as

\[
\dot{(\pi_{BD} \text{Grad}) \nu, \text{Div} \pi_{BD} \text{Div} \sigma)} \in \iota^* h =: \tilde{h}.
\]
Then the boundary condition can be reformulated as
\[
\left(\pi_{BD}(\text{Grad}) \nu, \text{Div} \pi_{BD}(\text{Div}) \sigma \right) \in \iota^* h \iota =: \tilde{h}.
\]

Proposition

If h *is maximal monotone and bounded (i.e. the* $h[B]$ *is bounded for bounded* B *), then* \tilde{h} *is maximal monotone.*
Then the boundary condition can be reformulated as

\[
(\pi_{\mathcal{BD}}(\text{Grad}) \nu, \text{Div} \pi_{\mathcal{BD}}(\text{Div}) \sigma) \in \iota^* h \ell =: \tilde{h}.
\]

Proposition

If \(h \) *is maximal monotone and bounded (i.e. the* \(h[B] \) *is bounded for bounded* \(B \), *then* \(\tilde{h} \) *is maximal monotone.*

Corollary

For sufficiently large \(\rho > 0 \) *the inverse relation*

\[
\left(\partial_0 \begin{pmatrix} 1 & 0 \\ 0 & C^{-1} \end{pmatrix} + A \right)^{-1}
\]

is a Lipschitz-continuous, causal mapping on \(H_{\rho,0}(\mathbb{R}; L_2(\Omega)^3 \oplus L_{2,\text{sym}}(\Omega)^{3 \times 3}) \).*
Thank you for your attention!

Autonomous Evolutionary Inclusions with Applications to Problems with Nonlinear Boundary Conditions.