On a HJM approach for stock options
Setting Lévy in motion

Jan Kallsen Paul Krühner

Christian-Albrechts-Universität zu Kiel

Dresden, Lévy 2010
July 26, 2010
Outline

1. Introduction
2. The philosophy of HJM
3. Setting Lévy in motion
Outline

1. Introduction
2. The philosophy of HJM
3. Setting Lévy in motion
Modelling stock options
Classical approach

- stock $S(t)$
- call options $C(t, T, K)$ with $C(T, T, K) = \max\{S(T) - K, 0\}$

Start with econometric model for the stock, e.g. geometric Brownian motion.

Use financial mathematics to derive option prices, e.g. arbitrage considerations.

inconsistencies? incomplete markets?
Modelling stock options
Classical approach

- **stock** $S(t)$
- call options $C(t, T, K)$ with $C(T, T, K) = \max\{S(T) - K, 0\}$

 Start with econometric model for the stock, e.g. geometric Brownian motion.

 Use financial mathematics to derive option prices, e.g. arbitrage considerations.

 inconsistencies? incomplete markets?
Modelling stock options
Classical approach

- stock $S(t)$
- call options $C(t, T, K)$ with $C(T, T, K) = \max\{S(T) - K, 0\}$

Start with econometric model for the stock, e.g. geometric Brownian motion.

Use financial mathematics to derive option prices, e.g. arbitrage considerations.

Inconsistencies? Incomplete markets?
Modelling stock options

Classical approach

- stock $S(t)$
- call options $C(t, T, K)$ with $C(T, T, K) = \max\{S(T) - K, 0\}$

Start with econometric model for the stock, e.g. geometric Brownian motion.

- Use financial mathematics to derive option prices, e.g. arbitrage considerations.

- inconsistencies? incomplete markets?
Modelling stock options
Classical approach

- stock $S(t)$
- call options $C(t, T, K)$ with $C(T, T, K) = \max\{S(T) - K, 0\}$

Start with econometric model for the stock, e.g. geometric Brownian motion.

Use financial mathematics to derive option prices, e.g. arbitrage considerations.

inconsistencies? incomplete markets?
Modelling stock options

Classical approach

- stock $S(t)$
- call options $C(t, T, K)$ with $C(T, T, K) = \max\{S(T) - K, 0\}$
- Start with econometric model for the stock, e.g. geometric Brownian motion.
- Use financial mathematics to derive option prices, e.g. arbitrage considerations.
- inconsistencies? incomplete markets?
Fundamental theorem of asset pricing: all assets are Q-martingales.
\[C(0, T, K) = E_Q(\max\{ S(T) - K, 0 \}) \]
Choose parametric model for S under Q.
Determine parameters such that observed option prices coincide with model prices (calibration).
recalibration?
Modelling stock options
First way out

- Fundamental theorem of asset pricing: all assets are Q-martingales.
 \[C(0, T, K) = E_Q(\max\{S(T) - K, 0\}) \]
- Choose parametric model for S under Q.
- Determine parameters such that observed option prices coincide with model prices (calibration).
- recalculation?
Modelling stock options
First way out

- Fundamental theorem of asset pricing: all assets are Q-martingales.
 $\sim \ C(0, T, K) = E_Q(\max\{S(T) - K, 0\})$
- Choose parametric model for S under Q.
 - Determine parameters such that observed option prices coincide with model prices (calibration).
 - recalibration?
Modelling stock options
First way out

- Fundamental theorem of asset pricing: all assets are Q-martingales.
 $\sim C(0, T, K) = E_Q(\max\{S(T) - K, 0\})$

- Choose parametric model for S under Q.

- Determine parameters such that observed option prices coincide with model prices (calibration).

- recalibration?
Modelling stock options
First way out

- Fundamental theorem of asset pricing: all assets are Q-martingales.
 $\Rightarrow C(0, T, K) = E_Q(\max\{S(T) - K, 0\})$

- Choose parametric model for S under Q.

- Determine parameters such that observed option prices coincide with model prices (calibration).

- recalibration?
Modelling stock options

Second way out

- Treat vanilla options as primary assets (HJM-kind approach).
- some references:
Heath-Jarrow-Morton (HJM) in interest rate theory
Heath et al. (1992)

- money market account $S_0(t) = \exp(\int_0^t r(s)ds)$

- view bonds as primary assets: $B(t, T)$ with $B(T, T) = 1$

- reparametrisation: forward rates $f(t, T) = \frac{\partial}{\partial T} \log B(t, T)$

- dynamics: $df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t)$

- HJM drift condition: $\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T))$ with $\Sigma(t, T) := \int_t^T \sigma(t, s)ds$, $\psi(u) := \frac{u^2}{2}$

- consistency condition: short rate $r(t) = f(t, t)$
Heath-Jarrow-Morton (HJM) in interest rate theory
Heath et al. (1992)

- money market account $S_0(t) = \exp(\int_0^t r(s)ds)$
- view bonds as primary assets: $B(t, T)$ with $B(T, T) = 1$
- reparametrisation: forward rates $f(t, T) = \frac{\partial}{\partial T} \log B(t, T)$
- dynamics: $df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t)$
- HJM drift condition: $\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T))$ with $\Sigma(t, T) := \int_t^T \sigma(t, s)ds$, $\psi(u) := \frac{u^2}{2}$
- consistency condition: short rate $r(t) = f(t, t)$
Heath-Jarrow-Morton (HJM) in interest rate theory
Heath et al. (1992)

- money market account $S_0(t) = \exp(\int_0^t r(s)ds)$

- view bonds as primary assets: $B(t, T)$ with $B(T, T) = 1$

- reparametrisation: forward rates $f(t, T) = \frac{\partial}{\partial T} \log B(t, T)$

- dynamics: $df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t)$

- HJM drift condition: $\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T))$ with $\Sigma(t, T) := \int_t^T \sigma(t, s)ds$, $\psi(u) := \frac{u^2}{2}$

- consistency condition: short rate $r(t) = f(t, t)$
Heath-Jarrow-Morton (HJM) in interest rate theory
Heath et al. (1992)

- money market account \(S_0(t) = \exp(\int_0^t r(s)ds) \)

- view bonds as primary assets: \(B(t, T) \) with \(B(T, T) = 1 \)

- reparametrisation: forward rates \(f(t, T) = \frac{\partial}{\partial T} \log B(t, T) \)

- dynamics: \(df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t) \)

- HJM drift condition: \(\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T)) \) with \(\Sigma(t, T) := \int_t^T \sigma(t, s)ds, \quad \psi(u) := \frac{u^2}{2} \)

- consistency condition: short rate \(r(t) = f(t, t) \)
Heath-Jarrow-Morton (HJM) in interest rate theory
Heath et al. (1992)

- money market account $S_0(t) = \exp(\int_0^t r(s)ds)$

- view bonds as primary assets: $B(t, T)$ with $B(T, T) = 1$

- reparametrisation: forward rates $f(t, T) = \frac{\partial}{\partial T} \log B(t, T)$

- dynamics: $df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t)$

- HJM drift condition: $\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T))$ with $\Sigma(t, T) := \int_t^T \sigma(t, s)ds$, $\psi(u) := \frac{u^2}{2}$

- consistency condition: short rate $r(t) = f(t, t)$
Heath-Jarrow-Morton (HJM) in interest rate theory
Heath et al. (1992)

- money market account \(S_0(t) = \exp(\int_0^t r(s)ds) \)

- view bonds as primary assets: \(B(t, T) \) with \(B(T, T) = 1 \)

- reparametrisation: forward rates \(f(t, T) = \frac{\partial}{\partial T} \log B(t, T) \)

- dynamics: \(df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t) \)

- HJM drift condition: \(\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T)) \) with \(\Sigma(t, T) := \int_t^T \sigma(t, s)ds, \quad \psi(u) := \frac{u^2}{2} \)

- consistency condition: short rate \(r(t) = f(t, t) \)
Outline

1 Introduction

2 The philosophy of HJM

3 Setting Lévy in motion
What is essential about HJM ...

... if we want to transfer it to stock options etc.?

- Do not model the canonical reference asset in detail.
- Treat whole manifold (curve/surface) of liquid derivatives as primary assets.
- Do not model them immediately, but use convenient parametrisation instead (codebook).
- Key to convenient parametrisation: use family of simple models for the canonical reference asset, having the same dimension as the manifold under consideration.
- Set it in motion, i.e. design a stochastic model for this codebook (which is supposed to be deterministic in the simple model).
- Derive dynamics of the canonical reference asset from consistency condition.
- Derive drift part of the codebook dynamics from drift condition.
What is essential about HJM ...
... if we want to transfer it to stock options etc.?

- Do not model the canonical reference asset in detail.
- Treat whole manifold (curve/surface) of liquid derivatives as primary assets.
- Do not model them immediately, but use convenient parametrisation instead (codebook).
- Key to convenient parametrisation: use family of simple models for the canonical reference asset, having the same dimension as the manifold under consideration.
- Set it in motion, i.e. design a stochastic model for this codebook (which is supposed to be deterministic in the simple model).
- Derive dynamics of the canonical reference asset from consistency condition.
- Derive drift part of the codebook dynamics from drift condition.
What is essential about HJM ...

... if we want to transfer it to stock options etc.?

- Do not model the canonical reference asset in detail.
- Treat whole manifold (curve/surface) of liquid derivatives as primary assets.
- Do not model them immediately, but use convenient parametrisation instead (codebook).
- Key to convenient parametrisation: use family of simple models for the canonical reference asset, having the same dimension as the manifold under consideration.
- Set it in motion, i.e. design a stochastic model for this codebook (which is supposed to be deterministic in the simple model).
- Derive dynamics of the canonical reference asset from consistency condition.
- Derive drift part of the codebook dynamics from drift condition.
What is essential about HJM ...

... if we want to transfer it to stock options etc.?

- Do not model the canonical reference asset in detail.
- Treat whole manifold (curve/surface) of liquid derivatives as primary assets.
- Do not model them immediately, but use convenient parametrisation instead (codebook).

- Key to convenient parametrisation: use family of simple models for the canonical reference asset, having the same dimension as the manifold under consideration.
- Set it in motion, i.e. design a stochastic model for this codebook (which is supposed to be deterministic in the simple model).
- Derive dynamics of the canonical reference asset from consistency condition.
- Derive drift part of the codebook dynamics from drift condition.
What is essential about HJM ...

... if we want to transfer it to stock options etc.?

- Do not model the canonical reference asset in detail.
- Treat whole manifold (curve/surface) of liquid derivatives as primary assets.
- Do not model them immediately, but use convenient parametrisation instead (codebook).
- Key to convenient parametrisation: use family of simple models for the canonical reference asset, having the same dimension as the manifold under consideration.
- Set it in motion, i.e. design a stochastic model for this codebook (which is supposed to be deterministic in the simple model).
- Derive dynamics of the canonical reference asset from consistency condition.
- Derive drift part of the codebook dynamics from drift condition.
What is essential about HJM ...
... if we want to transfer it to stock options etc.?

- Do not model the canonical reference asset in detail.
- Treat whole manifold (curve/surface) of liquid derivatives as primary assets.
- Do not model them immediately, but use convenient parametrisation instead (codebook).
- **Key to convenient parametrisation**: use family of simple models for the canonical reference asset, having the same dimension as the manifold under consideration.
- **Set it in motion**, i.e. design a stochastic model for this codebook (which is supposed to be deterministic in the simple model).
 - Derive dynamics of the canonical reference asset from consistency condition.
 - Derive drift part of the codebook dynamics from drift condition.
What is essential about HJM ...

... if we want to transfer it to stock options etc.?

- Do not model the canonical reference asset in detail.
- Treat whole manifold (curve/surface) of liquid derivatives as primary assets.
- Do not model them immediately, but use convenient parametrisation instead (codebook).
- Key to convenient parametrisation: use family of simple models for the canonical reference asset, having the same dimension as the manifold under consideration.
- Set it in motion, i.e. design a stochastic model for this codebook (which is supposed to be deterministic in the simple model).
- Derive dynamics of the canonical reference asset from consistency condition.
- Derive drift part of the codebook dynamics from drift condition.
What is essential about HJM ...
... if we want to transfer it to stock options etc.?

- Do not model the canonical reference asset in detail.
- Treat whole manifold (curve/surface) of liquid derivatives as primary assets.
- Do not model them immediately, but use convenient parametrisation instead (codebook).
- **Key to convenient parametrisation**: use family of simple models for the canonical reference asset, having the same dimension as the manifold under consideration.
- **Set it in motion**, i.e. design a stochastic model for this codebook (which is supposed to be deterministic in the simple model).
- Derive dynamics of the canonical reference asset from **consistency condition**.
- Derive drift part of the codebook dynamics from **drift condition**.
Example 1: Interest rate theory
Heath et al. (1992)

- Canonical reference asset: money market account
 \[dS_0(t) = S_0(t)r(t)dt \]
- Liquid derivatives: bonds \(B(t, T) \)
- Simple models: \(dS_0(t) = S_0(t)r(t)dt \) with deterministic short rate \(r(t), t \geq 0 \).
 - in this setup: bond prices \(B(t, T) = \exp(- \int_t^T r(s)ds) \).
 - this implies: \(r(T) = -\frac{\partial}{\partial T} \log B(t, T) \)
- This inspires the codebook \(f(t, T) = -\frac{\partial}{\partial T} \log B(t, T) \).
- Set it in motion: \(df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t) \).
- Consistency condition: \(r(t) = f(t, t) \)
- Drift condition: \(\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T)) \) with
 \(\Sigma(t, T) := \int_t^T \sigma(t, s)ds, \quad \psi(u) := \frac{u^2}{2} \)
Example 1: Interest rate theory
Heath et al. (1992)

- Canonical reference asset: money market account
 \[dS_0(t) = S_0(t)r(t)dt \]
- Liquid derivatives: bonds \(B(t, T) \)
- Simple models: \(dS_0(t) = S_0(t)r(t)dt \) with deterministic short rate \(r(t), t \geq 0 \).
 - in this setup: bond prices \(B(t, T) = \exp(-\int_t^T r(s)ds) \).
 - this implies: \(r(T) = -\frac{\partial}{\partial T} \log B(t, T) \)
- This inspires the codebook \(f(t, T) = -\frac{\partial}{\partial T} \log B(t, T) \).
- Set it in motion: \(df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t) \).
- Consistency condition: \(r(t) = f(t, t) \)
- Drift condition: \(\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T)) \) with \(\Sigma(t, T) := \int_t^T \sigma(t, s)ds \), \(\psi(u) := \frac{u^2}{2} \)
Example 1: Interest rate theory
Heath et al. (1992)

- Canonical reference asset: money market account
 \[dS_0(t) = S_0(t) r(t) dt \]

- Liquid derivatives: bonds \(B(t, T) \)

 - Simple models: \(dS_0(t) = S_0(t) r(t) dt \) with deterministic short rate \(r(t), t \geq 0. \)

 - in this setup: bond prices \(B(t, T) = \exp(- \int_t^T r(s) ds) \).
 - this implies: \(r(T) = - \frac{\partial}{\partial T} \log B(t, T) \)

- This inspires the codebook \(f(t, T) = - \frac{\partial}{\partial T} \log B(t, T) \).

- Set it in motion: \(df(t, T) = \alpha(t, T) dt + \sigma(t, T) dW(t) \).

- Consistency condition: \(r(t) = f(t, t) \)

- Drift condition: \(\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T)) \) with
 \[\Sigma(t, T) := \int_t^T \sigma(t, s) ds, \quad \psi(u) := \frac{u^2}{2} \]
Example 1: Interest rate theory
Heath et al. (1992)

- Canonical reference asset: money market account
 \[dS_0(t) = S_0(t)r(t)dt \]
- Liquid derivatives: bonds \(B(t, T) \)
- Simple models: \(dS_0(t) = S_0(t)r(t)dt \) with deterministic short rate \(r(t), t \geq 0. \)
- in this setup: bond prices \(B(t, T) = \exp(-\int_t^T r(s)ds) \).
- this implies: \(r(T) = -\frac{\partial}{\partial T} \log B(t, T) \)
- This inspires the codebook \(f(t, T) = -\frac{\partial}{\partial T} \log B(t, T) \).
- Set it in motion: \(df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t) \).
- Consistency condition: \(r(t) = f(t, t) \)
- Drift condition: \(\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T)) \) with \(\Sigma(t, T) := \int_t^T \sigma(t, s)ds, \quad \psi(u) := \frac{u^2}{2} \)
Example 1: Interest rate theory
Heath et al. (1992)

- Canonical reference asset: money market account
 \[dS_0(t) = S_0(t)r(t)dt\]

- Liquid derivatives: bonds \(B(t, T)\)

- Simple models: \(dS_0(t) = S_0(t)r(t)dt\) with deterministic short rate \(r(t), t \geq 0\).
 - in this setup: bond prices \(B(t, T) = \exp(-\int_t^T r(s)ds)\).
 - this implies: \(r(T) = -\frac{\partial}{\partial T} \log B(t, T)\)

- This inspires the codebook \(f(t, T) = -\frac{\partial}{\partial T} \log B(t, T)\).

- Set it in motion: \(df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t)\).

- Consistency condition: \(r(t) = f(t, t)\)

- Drift condition: \(\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T))\) with
 \(\Sigma(t, T) := \int_t^T \sigma(t, s)ds, \quad \psi(u) := \frac{u^2}{2}\)
Example 1: Interest rate theory
Heath et al. (1992)

- Canonical reference asset: money market account
 \[dS_0(t) = S_0(t)r(t)dt \]

- Liquid derivatives: bonds \(B(t, T) \)

- Simple models: \(dS_0(t) = S_0(t)r(t)dt \) with deterministic short rate \(r(t), t \geq 0 \).
 - in this setup: bond prices \(B(t, T) = \exp(- \int_t^T r(s)ds) \).
 - this implies: \(r(T) = -\frac{\partial}{\partial T} \log B(t, T) \)

- This inspires the codebook \(f(t, T) = -\frac{\partial}{\partial T} \log B(t, T) \).

- Set it in motion: \(df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t) \).

- Consistency condition: \(r(t) = f(t, t) \)

- Drift condition: \(\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T)) \) with
 \[\Sigma(t, T) := \int_t^T \sigma(t, s)ds, \quad \psi(u) := \frac{u^2}{2} \]
Example 1: Interest rate theory
Heath et al. (1992)

- Canonical reference asset: money market account
 \[dS_0(t) = S_0(t)r(t)dt \]
- Liquid derivatives: bonds \(B(t, T) \)
- Simple models: \(dS_0(t) = S_0(t)r(t)dt \) with deterministic short rate \(r(t), t \geq 0. \)
 - in this setup: bond prices \(B(t, T) = \exp(-\int_t^T r(s)ds). \)
 - this implies: \(r(T) = -\frac{\partial}{\partial T} \log B(t, T) \)
- This inspires the codebook \(f(t, T) = -\frac{\partial}{\partial T} \log B(t, T). \)
- Set it in motion: \(df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t). \)
- Consistency condition: \(r(t) = f(t, t) \)
- Drift condition: \(\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T)) \) with
 \[\Sigma(t, T) := \int_t^T \sigma(t, s)ds, \quad \psi(u) := \frac{u^2}{2} \]
Example 1: Interest rate theory
Heath et al. (1992)

- Canonical reference asset: money market account
 \[dS_0(t) = S_0(t)r(t)dt \]
- Liquid derivatives: bonds \(B(t, T) \)
- Simple models: \(dS_0(t) = S_0(t)r(t)dt \) with deterministic short rate \(r(t), t \geq 0 \).
 - in this setup: bond prices \(B(t, T) = \exp(-\int_t^T r(s)ds) \).
 - this implies: \(r(T) = -\frac{\partial}{\partial T} \log B(t, T) \)
- This inspires the codebook \(f(t, T) = -\frac{\partial}{\partial T} \log B(t, T) \).
- Set it in motion: \(df(t, T) = \alpha(t, T)dt + \sigma(t, T)dW(t) \).
- Consistency condition: \(r(t) = f(t, t) \)
- Drift condition: \(\alpha(t, T) = \frac{\partial}{\partial T} \psi(\Sigma(t, T)) \) with
 \[\Sigma(t, T) := \int_t^T \sigma(t, s)ds, \quad \psi(u) := \frac{u^2}{2} \]
Example 2: Credit derivative models
Bennani (2005)

- Canonical reference process: cumulative portfolio loss $L(t)$
- “Liquid” derivatives: T-forward loss $L(t, T) = E(L(T)|\mathcal{F}_t)$
- Simple models: $dL(t) = -(1 - L(t))x(t)dt$ with deterministic loss rate $x(t), t \geq 0$.
 - in this setup: bond prices $L(t, T) = 1 - \exp(-\int_t^T x(s)ds)$.
 - this implies: $x(T) = -\frac{\partial}{\partial T} \log(1 - L(t, T))$
- This inspires the codebook $X(t, T) = -\frac{\partial}{\partial T} \log(1 - L(t, T))$.
- Set it in motion: $df(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t) + \text{jumps}$.
- Consistency condition?
- Drift condition: $\alpha(t, T) = -\frac{\partial}{\partial T} \psi(B(t, T))$ with $B(t, T) := \int_t^T \beta(t, s)ds, \quad \psi(u) := \frac{u^2}{2} + \text{jump terms}$
Example 3: Credit derivative models
Schönbucher (2005)

- Canonical reference process: cumulative portfolio loss $L(t)$
- Liquid credit derivatives: $C(t, T, K)$ with $C(T, T, K) = (L(T) - K)^+$
- Simple models: $L(t)$ time-inhomogeneous continuous-time Markov chain with simple transition matrix
- Codebook: instantaneous transition probabilities $a(t, T, x)$ of this Markov chain
- Set it in motion: $da(t, T, x) = \alpha(t, T, x)dt + \beta(t, T, x)dW(t)$.
- Consistency condition: $a(t, t, L(t)) = \text{jump intensity of } L$
- Drift condition: $\alpha(t, T, x) = \ldots$
Example 4: Calls with fixed strike \(K \)
Schönbucher (1999), Schweizer & Wissel (2008)

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t) \)
- Liquid derivatives: calls \(C(t, T) \) with maturity \(T \)
- Simple models: \(dS(t) = S(t)\sigma(t)dB(t) \) with deterministic volatility \(\sigma(t), t \geq 0 \).
 - in this setup: call prices \(C(t, T) = BS_{S(t),K}(\int_t^T \sigma^2(s)ds) \) from Black-Scholes formula
 - conversely \(\sigma^2(T) = \frac{\partial}{\partial T}(BS^{-1}_{S(t),K}(C(t, T))) \)
- This inspires the codebook: \(X(t, T) = \frac{\partial}{\partial T}(BS^{-1}_{S(t),K}(C(t, T))) \)
- Set it in motion: \(dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t) \)
- Consistency condition: \(\sigma^2(t) = X(t, t) + \ldots \)
- Drift condition: \(\alpha(t, T) = \ldots \)
Example 4: Calls with fixed strike K
Schönbucher (1999), Schweizer & Wissel (2008)

- Canonical reference asset: stock $dS(t) = S(t)\sigma(t)dB(t)$
- Liquid derivatives: calls $C(t, T)$ with maturity T
- Simple models: $dS(t) = S(t)\sigma(t)dB(t)$ with deterministic volatility $\sigma(t)$, $t \geq 0$.
 - in this setup: call prices $C(t, T) = BS_{S(t),K}(\int_t^T \sigma^2(s)ds)$ from Black-Scholes formula
 - conversely $\sigma^2(T) = \frac{\partial}{\partial T}(BS_{S(t),K}^{-1}(C(t, T)))$
- This inspires the codebook: $X(t, T) = \frac{\partial}{\partial T}(BS_{S(t),K}^{-1}(C(t, T)))$
- Set it in motion: $dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t)$
- Consistency condition: $\sigma^2(t) = X(t, t) + \ldots$
- Drift condition: $\alpha(t, T) = \ldots$
Example 4: Calls with fixed strike \(K \)
Schönbucher (1999), Schweizer & Wissel (2008)

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t) \)
- Liquid derivatives: calls \(C(t, T) \) with maturity \(T \)
- Simple models: \(dS(t) = S(t)\sigma(t)dB(t) \) with deterministic volatility \(\sigma(t), t \geq 0. \)
 - in this setup: call prices \(C(t, T) = BS_{S(t),K}(\int_t^T \sigma^2(s)ds) \) from Black-Scholes formula
 - conversely \(\sigma^2(T) = \frac{\partial}{\partial T}(BS^{-1}_{S(t),K}(C(t, T))) \)
- This inspires the codebook: \(X(t, T) = \frac{\partial}{\partial T}(BS^{-1}_{S(t),K}(C(t, T))) \)
- Set it in motion: \(dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t) \)
- Consistency condition: \(\sigma^2(t) = X(t, t) + \ldots \)
- Drift condition: \(\alpha(t, T) = \ldots \)
Example 4: Calls with fixed strike K
Schönbucher (1999), Schweizer & Wissel (2008)

- Canonical reference asset: stock $dS(t) = S(t)\sigma(t)dB(t)$
- Liquid derivatives: calls $C(t, T)$ with maturity T
- Simple models: $dS(t) = S(t)\sigma(t)dB(t)$ with deterministic volatility $\sigma(t)$, $t \geq 0$.
 - in this setup: call prices $C(t, T) = BS_{S(t), K}(\int_t^T \sigma^2(s)ds)$ from Black-Scholes formula
 - conversely $\sigma^2(T) = \frac{\partial}{\partial T}(BS^{-1}_{S(t), K}(C(t, T)))$

This inspires the codebook: $X(t, T) = \frac{\partial}{\partial T}(BS^{-1}_{S(t), K}(C(t, T)))$
Set it in motion: $dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t)$
Consistency condition: $\sigma^2(t) = X(t, t) + \ldots$
Drift condition: $\alpha(t, T) = \ldots$
Example 4: Calls with fixed strike K
Schönbucher (1999), Schweizer & Wissel (2008)

- Canonical reference asset: stock $dS(t) = S(t)\sigma(t)dB(t)$
- Liquid derivatives: calls $C(t, T)$ with maturity T
- Simple models: $dS(t) = S(t)\sigma(t)dB(t)$ with deterministic volatility $\sigma(t)$, $t \geq 0$.
 - in this setup: call prices $C(t, T) = BS_{S(t),K}(\int_t^T \sigma^2(s)ds)$ from Black-Scholes formula
 - conversely $\sigma^2(T) = \frac{\partial}{\partial T}(BS^{-1}_{S(t),K}(C(t, T)))$

This inspires the codebook: $X(t, T) = \frac{\partial}{\partial T}(BS^{-1}_{S(t),K}(C(t, T)))$

- Set it in motion: $dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t)$
- Consistency condition: $\sigma^2(t) = X(t, t) + \ldots$
- Drift condition: $\alpha(t, T) = \ldots$
Example 4: Calls with fixed strike K
Schönbucher (1999), Schweizer & Wissel (2008)

- Canonical reference asset: stock $dS(t) = S(t)\sigma(t)dB(t)$
- Liquid derivatives: calls $C(t, T)$ with maturity T
- Simple models: $dS(t) = S(t)\sigma(t)dB(t)$ with deterministic volatility $\sigma(t)$, $t \geq 0$.
 - in this setup: call prices $C(t, T) = BS_{S(t), K} (\int_t^T \sigma^2(s)ds)$ from Black-Scholes formula
 - conversely $\sigma^2(T) = \frac{\partial}{\partial T}(BS_{S(t), K}^{-1}(C(t, T)))$

This inspires the codebook: $X(t, T) = \frac{\partial}{\partial T}(BS_{S(t), K}^{-1}(C(t, T)))$

Set it in motion: $dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t)$
- Consistency condition: $\sigma^2(t) = X(t, t) + \ldots$
- Drift condition: $\alpha(t, T) = \ldots$
Example 4: Calls with fixed strike K
Schönbucher (1999), Schweizer & Wissel (2008)

- Canonical reference asset: stock $dS(t) = S(t)\sigma(t)dB(t)$
- Liquid derivatives: calls $C(t, T)$ with maturity T
- Simple models: $dS(t) = S(t)\sigma(t)dB(t)$ with deterministic volatility $\sigma(t)$, $t \geq 0$.
 - in this setup: call prices $C(t, T) = BS_{S(t), K}(\int_t^T \sigma^2(s)ds)$ from Black-Scholes formula
 - conversely $\sigma^2(T) = \frac{\partial}{\partial T}(BS_{S(t), K}^{-1}(C(t, T)))$

This inspires the codebook: $X(t, T) = \frac{\partial}{\partial T}(BS_{S(t), K}^{-1}(C(t, T)))$

Set it in motion: $dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t)$

Consistency condition: $\sigma^2(t) = X(t, t) + \ldots$

Drift condition: $\alpha(t, T) = \ldots$
Example 4: Calls with fixed strike K
Schönbucher (1999), Schweizer & Wissel (2008)

- Canonical reference asset: stock $dS(t) = S(t)\sigma(t)dB(t)$
- Liquid derivatives: calls $C(t, T)$ with maturity T
- Simple models: $dS(t) = S(t)\sigma(t)dB(t)$ with deterministic volatility $\sigma(t), t \geq 0$.
 - in this setup: call prices $C(t, T) = BS_{S(t),K}(\int_{t}^{T} \sigma^{2}(s)ds)$ from Black-Scholes formula
 - conversely $\sigma^{2}(T) = \frac{\partial}{\partial T}(BS_{S(t),K}^{-1}(C(t, T)))$

This inspires the codebook: $X(t, T) = \frac{\partial}{\partial T}(BS_{S(t),K}^{-1}(C(t, T)))$

Set it in motion: $dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t)$

Consistency condition: $\sigma^{2}(t) = X(t, t) + \ldots$

Drift condition: $\alpha(t, T) = \ldots$
Example 5: Variance swaps
Bühler (2006)

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t) \)
- Liquid derivatives: \(V(t, T) \) with maturity \(V(T, T) = \int_0^T \sigma^2(t)dt \)
- Simple models: \(dS(t) = S(t)\sigma(t)dB(t) \) with deterministic volatility \(\sigma(t), t \geq 0 \).
 - in this setup: \(V(t, T) = \int_0^T \sigma^2(s)ds \)
 - conversely \(\sigma^2(T) = \frac{\partial}{\partial T} V(t, T) \)

This inspires the codebook: \(X(t, T) = \frac{\partial}{\partial T} V(t, T) \)
Set it in motion: \(dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t) \)
Consistency condition: \(\sigma(t) = X(t, t) \)
Drift condition: \(\alpha(t, T) = 0 \)
Example 5: Variance swaps
Bühler (2006)

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t)\)
- Liquid derivatives: \(V(t, T)\) with maturity \(V(T, T) = \int_0^T \sigma^2(t)dt\)
- Simple models: \(dS(t) = S(t)\sigma(t)dB(t)\) with deterministic volatility \(\sigma(t), t \geq 0\).
 - in this setup: \(V(t, T) = \int_0^T \sigma^2(s)ds\)
 - conversely \(\sigma^2(T) = \frac{\partial}{\partial T} V(t, T)\)
- This inspires the codebook: \(X(t, T) = \frac{\partial}{\partial T} V(t, T)\)
- Set it in motion: \(dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t)\)
- Consistency condition: \(\sigma(t) = X(t, t)\)
- Drift condition: \(\alpha(t, T) = 0\)
Example 5: Variance swaps
Bühler (2006)

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t) \)
- Liquid derivatives: \(V(t, T) \) with maturity \(V(T, T) = \int_0^T \sigma^2(t)dt \)
- Simple models: \(dS(t) = S(t)\sigma(t)dB(t) \) with deterministic volatility \(\sigma(t), t \geq 0. \)
 - in this setup: \(V(t, T) = \int_0^T \sigma^2(s)ds \)
 - conversely \(\sigma^2(T) = \frac{\partial}{\partial T} V(t, T) \)
- This inspires the codebook: \(X(t, T) = \frac{\partial}{\partial T} V(t, T) \)
- Set it in motion: \(dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t) \)
- Consistency condition: \(\sigma(t) = X(t, t) \)
- Drift condition: \(\alpha(t, T) = 0 \)
Example 5: Variance swaps
Bühler (2006)

- Canonical reference asset: stock $dS(t) = S(t)\sigma(t)dB(t)$
- Liquid derivatives: $V(t, T)$ with maturity $V(T, T) = \int_0^T \sigma^2(t)dt$
- Simple models: $dS(t) = S(t)\sigma(t)dB(t)$ with deterministic volatility $\sigma(t), t \geq 0$.
 - in this setup: $V(t, T) = \int_0^T \sigma^2(s)ds$
 - conversely $\sigma^2(T) = \frac{\partial}{\partial T} V(t, T)$

- This inspires the codebook: $X(t, T) = \frac{\partial}{\partial T} V(t, T)$
- Set it in motion: $dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t)$
- Consistency condition: $\sigma(t) = X(t, t)$
- Drift condition: $\alpha(t, T) = 0$
Example 5: Variance swaps
Bühler (2006)

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t) \)
- Liquid derivatives: \(V(t, T) \) with maturity \(V(T, T) = \int_0^T \sigma^2(t)dt \)
- Simple models: \(dS(t) = S(t)\sigma(t)dB(t) \) with deterministic volatility \(\sigma(t), t \geq 0 \).
 - in this setup: \(V(t, T) = \int_0^T \sigma^2(s)ds \)
 - conversely \(\sigma^2(T) = \frac{\partial}{\partial T} V(t, T) \)
- This inspires the codebook: \(X(t, T) = \frac{\partial}{\partial T} V(t, T) \)
- Set it in motion: \(dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t) \)
- Consistency condition: \(\sigma(t) = X(t, t) \)
- Drift condition: \(\alpha(t, T) = 0 \)
Example 5: Variance swaps
Bühler (2006)

- Canonical reference asset: stock $dS(t) = S(t)\sigma(t)dB(t)$
- Liquid derivatives: $V(t, T)$ with maturity $V(T, T) = \int_0^T \sigma^2(t)dt$
- Simple models: $dS(t) = S(t)\sigma(t)dB(t)$ with deterministic volatility $\sigma(t)$, $t \geq 0$.
 - in this setup: $V(t, T) = \int_0^T \sigma^2(s)ds$
 - conversely $\sigma^2(T) = \frac{\partial}{\partial T} V(t, T)$
- This inspires the codebook: $X(t, T) = \frac{\partial}{\partial T} V(t, T)$
- Set it in motion: $dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t)$
- Consistency condition: $\sigma(t) = X(t, t)$
- Drift condition: $\alpha(t, T) = 0$
Example 5: Variance swaps
Bühler (2006)

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t) \)
- Liquid derivatives: \(V(t, T) \) with maturity \(V(T, T) = \int_0^T \sigma^2(t)dt \)
- Simple models: \(dS(t) = S(t)\sigma(t)dB(t) \) with deterministic volatility \(\sigma(t), t \geq 0. \)
 - in this setup: \(V(t, T) = \int_0^T \sigma^2(s)ds \)
 - conversely \(\sigma^2(T) = \frac{\partial}{\partial T} V(t, T) \)
- This inspires the codebook: \(X(t, T) = \frac{\partial}{\partial T} V(t, T) \)
- Set it in motion: \(dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t) \)
- Consistency condition: \(\sigma(t) = X(t, t) \)
- Drift condition: \(\alpha(t, T) = 0 \)
Example 5: Variance swaps
Bühler (2006)

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t)\)
- Liquid derivatives: \(V(t, T)\) with maturity \(V(T, T) = \int_0^T \sigma^2(t)dt\)
- Simple models: \(dS(t) = S(t)\sigma(t)dB(t)\) with deterministic volatility \(\sigma(t), t \geq 0\).
 - in this setup: \(V(t, T) = \int_0^T \sigma^2(s)ds\)
 - conversely \(\sigma^2(T) = \frac{\partial}{\partial T} V(t, T)\)
- This inspires the codebook: \(X(t, T) = \frac{\partial}{\partial T} V(t, T)\)
- Set it in motion: \(dX(t, T) = \alpha(t, T)dt + \beta(t, T)dW(t)\)
- Consistency condition: \(\sigma(t) = X(t, t)\)
- Drift condition: \(\alpha(t, T) = 0\)
Example 6: Calls/puts with all maturities/strikes

- Canonical reference asset: stock $dS(t) = S(t)\sigma(t)dB(t)$
- Liquid derivatives: calls $C(t, T, K)$ with maturity T and strike K
- Simple models: Dupire’s implied diffusion
 $dS(t) = S(t)\sigma(t, S(t))dB(t)$ with deterministic function $\sigma(\cdot, \cdot)$
 - in this setup: call prices $C(t, T, K)$ obtained as solution to nonlinear PDE
 - conversely $\sigma^2(T, K) = \frac{2}{K^2} \frac{\partial}{\partial T} C(t, T, K) \frac{1}{\frac{\partial^2}{\partial K^2} C(t, T, K)}$

- This inspires the codebook: $X(t, T, K) = \frac{2}{K^2} \frac{\partial}{\partial T} C(t, T, K) \frac{1}{\frac{\partial^2}{\partial K^2} C(t, T, K)}$

- Set it in motion: $dX(t, T, K) = \alpha(t, T, K)dt + \beta(t, T, K)dW(t)$
- Consistency condition: $\sigma(t) = X(t, t, S(t))$
- Drift condition: $\alpha(t, T, K) = \ldots$
Example 6: Calls/puts with all maturities/strikes

- Canonical reference asset: stock $dS(t) = S(t)\sigma(t)dB(t)$
- Liquid derivatives: calls $C(t, T, K)$ with maturity T and strike K
- Simple models: Dupire’s implied diffusion $dS(t) = S(t)\sigma(t, S(t))dB(t)$ with deterministic function $\sigma(\cdot, \cdot)$
 ▶ in this setup: call prices $C(t, T, K)$ obtained as solution to nonlinear PDE
 ▶ conversely $\sigma^2(T, K) = \frac{2 \frac{\partial}{\partial T} C(t, T, K)}{K^2 \frac{\partial^2}{\partial K^2} C(t, T, K)}$
- This inspires the codebook: $X(t, T, K) = \frac{2 \frac{\partial}{\partial T} C(t, T, K)}{K^2 \frac{\partial^2}{\partial K^2} C(t, T, K)}$
- Set it in motion: $dX(t, T, K) = \alpha(t, T, K)dt + \beta(t, T, K)dW(t)$
- Consistency condition: $\sigma(t) = X(t, t, S(t))$
- Drift condition: $\alpha(t, T, K) = \ldots$
Example 6: Calls/puts with all maturities/strikes

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t) \)
- Liquid derivatives: calls \(C(t, T, K) \) with maturity \(T \) and strike \(K \)
- Simple models: Dupire's implied diffusion
 \[
dS(t) = S(t)\sigma(t, S(t))dB(t)
\]
 - in this setup: call prices \(C(t, T, K) \) obtained as solution to nonlinear PDE
 - conversely \(\sigma^2(T, K) = \frac{2}{K^2} \frac{\partial}{\partial T} C(t, T, K) \frac{\partial^2}{\partial K^2} C(t, T, K) \)

This inspires the codebook: \(X(t, T, K) = \frac{2}{K^2} \frac{\partial}{\partial T} C(t, T, K) \frac{\partial^2}{\partial K^2} C(t, T, K) \)

Set it in motion: \(dX(t, T, K) = \alpha(t, T, K)dt + \beta(t, T, K)dW(t) \)
- Consistency condition: \(\sigma(t) = X(t, t, S(t)) \)
- Drift condition: \(\alpha(t, T, K) = \ldots \)
Example 6: Calls/puts with all maturities/strikes

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t) \)
- Liquid derivatives: calls \(C(t, T, K) \) with maturity \(T \) and strike \(K \)
- Simple models: Dupire’s implied diffusion
 \(dS(t) = S(t)\sigma(t, S(t))dB(t) \) with deterministic function \(\sigma(\cdot, \cdot) \)
 - in this setup: call prices \(C(t, T, K) \) obtained as solution to nonlinear PDE
 - conversely \(\sigma^2(T, K) = \frac{2}{K^2} \frac{\partial^2}{\partial K^2} C(t,T,K) \)

This inspires the codebook: \(X(t, T, K) = \frac{2}{K^2} \frac{\partial}{\partial T} C(t,T,K) \)

Set it in motion: \(dX(t, T, K) = \alpha(t, T, K)dt + \beta(t, T, K)dW(t) \)
- Consistency condition: \(\sigma(t) = X(t, t, S(t)) \)
- Drift condition: \(\alpha(t, T, K) = \ldots \)

\[22 / 36 \]
Example 6: Calls/puts with all maturities/strikes

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t) \)
- Liquid derivatives: calls \(C(t, T, K) \) with maturity \(T \) and strike \(K \)
- Simple models: Dupire’s implied diffusion
 \(dS(t) = S(t)\sigma(t, S(t))dB(t) \) with deterministic function \(\sigma(\cdot, \cdot) \)
 ▶ in this setup: call prices \(C(t, T, K) \) obtained as solution to nonlinear PDE
 ▶ conversely \(\sigma^2(T, K) = \frac{2 \frac{\partial}{\partial T} C(t,T,K)}{K^2 \frac{\partial^2}{\partial K^2} C(t,T,K)} \)

- This inspires the codebook: \(X(t, T, K) = \frac{2 \frac{\partial}{\partial T} C(t,T,K)}{K^2 \frac{\partial^2}{\partial K^2} C(t,T,K)} \)
- Set it in motion: \(dX(t, T, K) = \alpha(t, T, K)dt + \beta(t, T, K)dW(t) \)
- Consistency condition: \(\sigma(t) = X(t, t, S(t)) \)
- Drift condition: \(\alpha(t, T, K) = \ldots \)
Example 6: Calls/puts with all maturities/strikes

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t) \)
- Liquid derivatives: calls \(C(t, T, K) \) with maturity \(T \) and strike \(K \)
- Simple models: Dupire’s implied diffusion
 \(dS(t) = S(t)\sigma(t, S(t))dB(t) \) with deterministic function \(\sigma(\cdot, \cdot) \)
 - in this setup: call prices \(C(t, T, K) \) obtained as solution to nonlinear PDE
 - conversely \(\sigma^2(T, K) = \frac{2 \frac{\partial}{\partial T} C(t,T,K)}{K^2 \frac{\partial^2}{\partial K^2} C(t,T,K)} \)

- This inspires the codebook: \(X(t, T, K) = \frac{2 \frac{\partial}{\partial T} C(t,T,K)}{K^2 \frac{\partial^2}{\partial K^2} C(t,T,K)} \)
- Set it in motion: \(dX(t, T, K) = \alpha(t, T, K)dt + \beta(t, T, K)dW(t) \)
 - Consistency condition: \(\sigma(t) = X(t, t, S(t)) \)
 - Drift condition: \(\alpha(t, T, K) = \ldots \)
Example 6: Calls/puts with all maturities/strikes

- Canonical reference asset: stock \(dS(t) = S(t)\sigma(t)dB(t) \)
- Liquid derivatives: calls \(C(t, T, K) \) with maturity \(T \) and strike \(K \)
- Simple models: Dupire’s implied diffusion
 \[dS(t) = S(t)\sigma(t, S(t))dB(t) \]
 - in this setup: call prices \(C(t, T, K) \) obtained as solution to nonlinear PDE
 - conversely \(\sigma^2(T, K) = \frac{2}{K^2} \frac{\partial}{\partial T} C(t, T, K) \)
- This inspires the codebook: \(X(t, T, K) = \frac{2}{K^2} \frac{\partial}{\partial K^2} C(t, T, K) \)
- Set it in motion: \(dX(t, T, K) = \alpha(t, T, K)dt + \beta(t, T, K)dW(t) \)
- Consistency condition: \(\sigma(t) = X(t, t, S(t)) \)
- Drift condition: \(\alpha(t, T, K) = \ldots \)
Example 6: Calls/puts with all maturities/strikes

- Canonical reference asset: stock $dS(t) = S(t)\sigma(t)dB(t)$
- Liquid derivatives: calls $C(t, T, K)$ with maturity T and strike K
- Simple models: Dupire’s implied diffusion $dS(t) = S(t)\sigma(t, S(t))dB(t)$ with deterministic function $\sigma(\cdot, \cdot)$
 - in this setup: call prices $C(t, T, K)$ obtained as solution to nonlinear PDE
 - conversely $\sigma^2(T, K) = \frac{2}{K^2} \frac{\partial}{\partial T} C(t, T, K) \frac{\partial^2}{\partial K^2} C(t, T, K)$

This inspires the codebook: $X(t, T, K) = \frac{2}{K^2} \frac{\partial}{\partial T} C(t, T, K) \frac{\partial^2}{\partial K^2} C(t, T, K)$

Set it in motion: $dX(t, T, K) = \alpha(t, T, K)dt + \beta(t, T, K)dW(t)$
- Consistency condition: $\sigma(t) = X(t, t, S(t))$
- Drift condition: $\alpha(t, T, K) = \ldots$
1 Introduction

2 The philosophy of HJM

3 Setting Lévy in motion
Calls/puts with all maturities/strikes

Setting Lévy in motion

- Canonical reference asset: stock
 \[S(t) = \exp(X(t)), \]
 where \(X \) semimartingale with “local exponent” \(\psi_X(t, u) \)
 (i.e. \(e^{iuX(t)} - \int_0^t e^{iuX(s^-)} \psi_X(s, u) ds \) local martingale for any \(u \in \mathbb{R} \))

- Liquid derivatives: calls \(C(t, T, K) \) with maturity \(T \) and strike \(K \)
Calls/puts with all maturities/strikes

Setting Lévy in motion

- Canonical reference asset: stock

\[S(t) = \exp(X(t)), \]

where \(X \) semimartingale with “local exponent” \(\psi_X(t, u) \)
(i.e. \(e^{iuX(t)} - \int_0^t e^{iuX(s^-)}\psi_X(s, u)ds \) local martingale for any \(u \in \mathbb{R} \))

- Liquid derivatives: calls \(C(t, T, K) \) with maturity \(T \) and strike \(K \)
Calls/puts with all maturities/strikes

Setting Lévy in motion

- Canonical reference asset: stock
 \[S(t) = \exp(X(t)), \]
 where \(X \) semimartingale with “local exponent” \(\psi_X(t, u) \)
 (i.e. \(e^{iuX(t)} - \int_0^t e^{iuX(s^-)} \psi_X(s, u)ds \) local martingale for any \(u \in \mathbb{R} \))

- Liquid derivatives: calls \(C(t, T, K) \) with maturity \(T \) and strike \(K \)
Calls/puts with all maturities/strikes

Setting Lévy in motion

- Simple models: exponential time-inhomogeneous Lévy process
 \(S(t) = S(0) \exp(X(t)) \), where \(E(e^{iuX(t)}) = \exp(\int_0^t \psi(s,u) \, ds) \).

 - in this setup: call prices
 \[C(t, T, K) = K \mathcal{F}f(T, \log \frac{K}{S(t)}) \]
 with \(f(u) = \frac{1-\exp(\int_t^T \psi(t,s,u) \, ds)}{u^2 + iu} \) and \(\mathcal{F}f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iux} f(u) \, du \)

 - conversely
 \[\psi(T, u) = \frac{\partial}{\partial T} \log(1 - (u^2 + iu) \mathcal{F}g(u)) \]
 with \(g(x) = \frac{C(t, T, S(t) e^x)}{K} \) and \(\mathcal{F}f(u) = \int_{-\infty}^{\infty} e^{iux} f(x) \, dx \)
Calls/puts with all maturities/strikes

Setting Lévy in motion

- Simple models: exponential time-inhomogeneous Lévy process
 \(S(t) = S(0) \exp(X(t)) \), where \(E(e^{iuX(t)}) = \exp(\int_0^t \psi(s, u)ds) \).

 - in this setup: call prices
 \[
 C(t, T, K) = K \overline{F}f(T, \log \frac{K}{S(t)})
 \]
 with \(f(u) = \frac{1 - \exp(\int_t^T \psi(t, s, u)ds)}{u^2 + iu} \) and \(\overline{F}f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iux} f(u)du \)

 - conversely
 \[
 \psi(T, u) = \frac{\partial}{\partial T} \log(1 - (u^2 + iu)Fg(u))
 \]
 with \(g(x) = \frac{C(t, T, S(t)e^x)}{K} \) and \(Ff(u) = \int_{-\infty}^{\infty} e^{iux} f(x)dx \)
Calls/puts with all maturities/strikes

Setting Lévy in motion

- Simple models: exponential time-inhomogeneous Lévy process
 \[S(t) = S(0) \exp(X(t)), \text{ where } E(e^{iuX(t)}) = \exp(\int_0^t \psi(s, u)ds). \]

 - in this setup: call prices
 \[
 C(t, T, K) = K \mathcal{F}f(T, \log \frac{K}{S(t)})
 \]
 with \(f(u) = \frac{1 - \exp(\int_t^T \psi(t, s, u)ds)}{u^2 + iu} \) and \(\mathcal{F}f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iux} f(u)du \)

 - conversely
 \[
 \psi(T, u) = \frac{\partial}{\partial T} \log(1 - (u^2 + iu)\mathcal{F}g(u))
 \]
 with \(g(x) = \frac{C(t, T, S(t)e^x)}{K} \) and \(\mathcal{F}f(u) = \int_{-\infty}^{\infty} e^{iux} f(x)dx \)
Calls/puts with all maturities/strikes

Setting Lévy in motion

- Simple models: exponential time-inhomogeneous Lévy process
 \[S(t) = S(0) \exp(X(t)), \text{ where } E(e^{iuX(t)}) = \exp(\int_0^t \psi(s, u)ds). \]

 - in this setup: call prices
 \[C(t, T, K) = K \tilde{F}f(T, \log \frac{K}{S(t)}) \]
 with \(f(u) = \frac{1 - \exp(\int_T^t \psi(t, s, u)ds)}{u^2 + iu} \) and \(\tilde{F}f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iux} f(u)du \)

 - conversely
 \[\psi(T, u) = \frac{\partial}{\partial T} \log(1 - (u^2 + iu)\mathcal{F}g(u)) \]
 with \(g(x) = \frac{C(t, T, S(t)e^x)}{K} \) and \(\mathcal{F}f(u) = \int_{-\infty}^{\infty} e^{iux} f(x)dx \)
Calls/puts with all maturities/strikes

Setting Lévy in motion

- This inspires the codebook:

\[
\psi(t, T, u) = \frac{\partial}{\partial T} \log(1 - (u^2 + iu)Fg(u))
\]

with \(g(x) = \frac{C(t,T,S(t)e^x)}{K} \)

- Set it in motion: \(d\psi(t, T, u) = \alpha(t, T, u)dt + \beta(t, T, u)dM(t) \)

- Consistency condition: \(\psi_X(t, u) = \psi(t, t, u) \)

- Drift condition: \(\alpha(t, T, u) = -\frac{\partial}{\partial T} \psi_{X,M}(u, -B(t, T, u)) \) with \(B(t, T, u) := \int_t^T \beta(t, s, u)ds \), \(\psi_{X,M}(u) \) “local exponent” of \((X, M) \)
Calls/puts with all maturities/strikes

Setting Lévy in motion

- This inspires the codebook:

\[\psi(t, T, u) = \frac{\partial}{\partial T} \log(1 - (u^2 + iu)Fg(u)) \]

with \(g(x) = \frac{C(t, T, S(t)e^x)}{K} \)

- Set it in motion:

\[d\psi(t, T, u) = \alpha(t, T, u)dt + \beta(t, T, u)dM(t) \]

- Consistency condition: \(\psi_X(t, u) = \psi(t, t, u) \)

- Drift condition: \(\alpha(t, T, u) = -\frac{\partial}{\partial T} \psi_{X,M}(u, -B(t, T, u)) \) with

\[B(t, T, u) := \int_t^T \beta(t, s, u)ds, \]

\(\psi_{X,M}(u) \) “local exponent” of \((X, M)\)
Calls/puts with all maturities/strikes

Setting Lévy in motion

- This inspires the codebook:

$$
\psi(t, T, u) = \frac{\partial}{\partial T} \log(1 - (u^2 + i u) \mathcal{F}g(u))
$$

with $g(x) = \frac{C(t, T, S(t)e^x)}{K}$

- Set it in motion: $d\psi(t, T, u) = \alpha(t, T, u)dt + \beta(t, T, u)dM(t)$

- Consistency condition: $\psi_X(t, u) = \psi(t, t, u)$

- Drift condition: $\alpha(t, T, u) = -\frac{\partial}{\partial T} \psi_{X,M}(u, -B(t, T, u))$ with $B(t, T, u) := \int_t^T \beta(t, s, u)ds$, $\psi_{X,M}(u)$ “local exponent” of (X, M)
Calls/puts with all maturities/strikes

Setting Lévy in motion

- This inspires the codebook:

\[
\psi(t, T, u) = \frac{\partial}{\partial T} \log(1 - (u^2 + iu)Fg(u))
\]

with \(g(x) = \frac{C(t,T,S(t)e^x)}{K} \)

- Set it in motion: \(d\psi(t, T, u) = \alpha(t, T, u)dt + \beta(t, T, u)dM(t) \)

- Consistency condition: \(\psi_X(t, u) = \psi(t, t, u) \)

- Drift condition: \(\alpha(t, T, u) = -\frac{\partial}{\partial T} \psi_{X,M}(u, -B(t, T, u)) \) with

\[
B(t, T, u) := \int_t^T \beta(t, s, u)ds,
\]

\(\psi_{X,M}(u) \) “local exponent” of \((X, M)\)
Calls/puts with all maturities/strikes

Setting Lévy in motion

- This inspires the codebook:

\[
\psi(t, T, u) = \frac{\partial}{\partial T} \log(1 - (u^2 + iu)Fg(u))
\]

with \(g(x) = \frac{C(t, T, S(t)e^x)}{K} \)

- Set it in motion: \(d\psi(t, T, u) = \alpha(t, T, u)dt + \beta(t, T, u)dM(t) \)

- Consistency condition: \(\psi_X(t, u) = \psi(t, t, u) \)

- Drift condition: \(\alpha(t, T, u) = -\frac{\partial}{\partial T} \psi_{X,M}(u, -B(t, T, u)) \) with

\[
B(t, T, u) := \int_t^T \beta(t, s, u)ds,
\]

\(\psi_{X,M}(u) \) “local exponent” of \((X, M)\)
Example 1: Time-inhomogeneous Lévy processes
the trivial example

- \[S(t) = \exp(X(t)) \]
- \[d\psi(t, T, u) = \alpha(t, T, u)dt + \beta(t, T, u)dM(t) \]
- consider
 \[\beta(t, T, u) \equiv 0 \]

\[\sim \psi(t, T, u) \text{ deterministic, constant in } t, \]
\[X \text{ time-inhomogeneous Lévy process with} \]
\[E(e^{iuX(t)}) = \exp(\int_0^T \psi(0, T, u)ds) \]
Example 1: Time-inhomogeneous Lévy processes
the trivial example

- $S(t) = \exp(X(t))$
- $d\psi(t, T, u) = \alpha(t, T, u)dt + \beta(t, T, u)dM(t)$
- Consider
 \[\beta(t, T, u) \equiv 0 \]

$\Rightarrow \psi(t, T, u)$ deterministic, constant in t.
X time-inhomogeneous Lévy process with
$E(e^{iuX(t)}) = \exp(\int_0^T \psi(0, T, u)ds)$
Example 1: Time-inhomogeneous Lévy processes
the trivial example

- \(S(t) = \exp(X(t)) \)

- \(d\Psi(t, T, u) = \alpha(t, T, u)dt + \beta(t, T, u)dM(t) \)

- consider \(\beta(t, T, u) \equiv 0 \)

\(\Psi(t, T, u) \) deterministic, constant in \(t \),
\(X \) time-inhomogeneous Lévy process with
\(E(e^{iuX(t)}) = \exp(\int_0^T \Psi(0, T, u)ds) \)
Example 2: A simple dynamic codebook model
a simple nontrivial example

- $S(t) = \exp(X(t))$
- $d\Psi(t, T, u) = \alpha(t, T, u)dt + \beta(t, T, u)dM(t)$
- consider subordinator M,

$$\beta(t, T, u) = \frac{-iu + u^2}{2}e^{-\lambda(T-t)}$$

\leadsto stock return process of the form

$$d\log(S(t)) = dL(t) - \frac{1}{2}v(t)dt + \sqrt{v(t)}dW(t) + \rho dM(t),$$

$$dv(t) = -\lambda v(t)dt + dM(t),$$

i.e. slight generalisation of the Barndorff-Nielsen & Shephard (2001) stochastic volatility model
Example 2: A simple dynamic codebook model

a simple nontrivial example

- \(S(t) = \exp(X(t)) \)
- \(d\Psi(t, T, u) = \alpha(t, T, u)dt + \beta(t, T, u)dM(t) \)
- consider subordinator \(M \),

\[\beta(t, T, u) = \frac{-iu + u^2}{2} e^{-\lambda(T-t)} \]

\(\leadsto \) stock return process of the form

\[d\log(S(t)) = dL(t) - \frac{1}{2} \nu(t)dt + \sqrt{\nu(t)}dW(t) + \rho dM(t), \]
\[d\nu(t) = -\lambda \nu(t)dt + dM(t), \]

i.e. slight generalisation of the Barndorff-Nielsen & Shephard (2001) stochastic volatility model
Example 2: A simple dynamic codebook model
a simple nontrivial example

- \(S(t) = \exp(X(t)) \)
- \(d\Psi(t, T, u) = \alpha(t, T, u)dt + \beta(t, T, u)dM(t) \)
- consider subordinator \(M \),

\[
\beta(t, T, u) = \frac{-iu + u^2}{2} e^{-\lambda(T-t)}
\]

\(\leadsto \) stock return process of the form

\[
\begin{align*}
 d \log(S(t)) &= dL(t) - \frac{1}{2} \nu(t) dt + \sqrt{\nu(t)} dW(t) + \rho dM(t), \\
 d\nu(t) &= -\lambda \nu(t) dt + dM(t),
\end{align*}
\]

i.e. slight generalisation of the Barndorff-Nielsen & Shephard (2001) stochastic volatility model
Conclusion

- HJM-kind approach provides general framework for option surface modelling
- concrete models etc.? \(\sim\) econometrics
- cf. also Carmona & Nadtochiy (2009)
Conclusion

- HJM-kind approach provides general framework for option surface modelling
 - concrete models etc.? \(\sim\) econometrics
 - cf. also Carmona & Nadtochiy (2009)
Conclusion

- HJM-kind approach provides general framework for option surface modelling
- concrete models etc.? ~ econometrics
- cf. also Carmona & Nadtochiy (2009)
Conclusion

- HJM-kind approach provides general framework for option surface modelling
- concrete models etc.? ⇔ econometrics
- cf. also Carmona & Nadtochiy (2009)