Symmetrization of Lévy processes and applications

Pedro J. Méndez Hernández

Universidad de Costa Rica

July 2010, Dresden
Isoperimetric inequalities

Classical Inequality

Among all figures of equal perimeter, the circle encloses the largest area.
Isoperimetric inequalities

Classical Inequality

Among all figures of equal perimeter, the circle encloses the largest area.

Equivalently: Among all regions of equal area, the disk has the smallest perimeter.
Isoperimetric inequalities

Classical Inequality

Among all figures of equal perimeter, the circle encloses the largest area.

Equivalently: Among all regions of equal area, the disk has the smallest perimeter.

Generalized Isoperimetric Inequalities

Among all regions of fixed measure, there is a large class of quantities that are maximized, or minimized, by the corresponding quantities for the ball: surface area, eigenvalues, capacities, exit times, etc.
Isoperimetric problem for exit times

Let D be a domain in \mathbb{R}^d with finite measure, and let τ_D the first exit time of B_t from a domain D.

Question

Assuming same measure, which of the two figures have a largest survival time?
Isoperimetric problem for exit times

Let D be a domain in \mathbb{R}^d with finite measure, and let τ_D the first exit time of B_t from a domain D.

Question

Assuming same measure, which of the two figures have a largest survival time

Answer: Obviously the ball
Define $D^* = B(0, R(D))$ the open ball centered at the origin "0" of same volume as D.

Theorem

*Let D be a domain of finite area, then for all $z \in D$

$$P^z(\tau_D > t) \leq P^0(\tau_{D^*} > t)$$
Define $D^* = B(0, R(D))$ the open ball centered at the origin "0" of same volume as D.

Theorem

Let D be a domain of finite area, then for all $z \in D$

$$P^z(\tau_D > t) \leq P^0(\tau_{D^*} > t)$$

"The isoperimetric theorem, deeply rooted in our experience and intuition so easy to conjecture, but not so easy to prove, is an inexhaustible source of inspiration." G. Pólya: Mathematics and Plausible Thinking.
Isoperimetric problem for exit times

Let X_t be a symmetric α-stable processes in \mathbb{R}^d, and τ_D^α the first exit time of X_t from D.

$$P^z (\tau_D^\alpha > t) = P^z (X_s \in D, 0 \leq s < t)$$

$$= \lim_{m \to \infty} P^z \left(X_{\frac{jt}{m}} \in D, j = 1, \ldots, m \right).$$
Isoperimetric problem for exit times

Let X_t be a symmetric α-stable processes in \mathbb{R}^d, and τ^α_D the first exit time of X_t from D.

$$P^z(\tau^\alpha_D > t) = P^z(X_s \in D, 0 \leq s < t)$$

$$= \lim_{m \to \infty} P^z\left(\frac{X_{jt}}{m} \in D, j = 1, \ldots, m\right).$$

Thus to prove

$$P^z(\tau^\alpha_D > t) \leq P^0(\tau^\alpha_{D^*} > t), \text{ for all } z \in \mathbb{R}^d.$$

It is enough to prove that

$$P^z\left(\frac{X_{t}}{m} \in D, \frac{X_{2t}}{m} \in D, \ldots, \frac{X_{mt}}{m} \in D\right)$$

$$\leq P^0\left(\frac{X_{t}}{m} \in D^*, \frac{X_{2t}}{m} \in D^*, \ldots, \frac{X_{mt}}{m} \in D^*\right).$$
Isoperimetric problem for exit times

Let X_t be a symmetric α-stable processes in \mathbb{R}^d, and τ_D^α the first exit time of X_t from D.

$$P_z^\alpha (\tau_D^\alpha > t) = P_z^\alpha (X_s \in D, 0 \leq s < t) = \lim_{m \to \infty} P_z^\alpha \left(X_{jt_m} \in D, j = 1, \ldots, m \right).$$

Thus to prove

$$P_z^\alpha (\tau_D^\alpha > t) \leq P_0^\alpha (\tau_D^{\alpha*} > t), \text{ for all } z \in \mathbb{R}^d.$$

It is enough to prove that

$$P_z^\alpha \left(X_{t_m} \in D, X_{2t_m} \in D, \ldots, X_{mt_m} \in D \right) \leq P_0^\alpha \left(X_{t_m} \in D^*, X_{2t_m} \in D^*, \ldots, X_{mt_m} \in D^* \right).$$

Main idea: Reduce the problem to an inequality of finite dimensional distributions of X_t.
Recall that X_t has transition densities $p_\alpha(t, x, y)$ such that

$$p_\alpha(t, x, y) = f_\alpha(|x - y|),$$

with f_X decreasing. We want

$$\int_D \cdots \int_D \prod_{j=1}^m p_\alpha \left(\frac{t}{m}, z_j - z_{j-1} \right) dz_1 \cdots dz_m$$

\[= P^{z_0} \left(X_{\frac{t}{m}} \in D, X_{\frac{2t}{m}} \in D, \ldots, X_{\frac{mt}{m}} \in D \right) \]

\[\leq P^0 \left(X_{\frac{t}{m}} \in D^*, X_{\frac{2t}{m}} \in D^*, \ldots, X_{\frac{mt}{m}} \in D^* \right) \]

\[= \int_{D^*} \cdots \int_{D^*} p_\alpha \left(\frac{t}{m}, z_1 \right) \prod_{j=2}^m p_\alpha \left(\frac{t}{m}, z_j - z_{j-1} \right) dz_1 \cdots dz_m.\]
Using rearrangement inequalities one can prove that,

\[
\int_D \cdots \int_D \prod_{j=1}^m p_\alpha \left(\frac{t}{m}, z_j - z_{j-1} \right) \, dz_1 \cdots dz_m
\]

\[
\leq \int_{D^*} \cdots \int_{D^*} \prod_{j=2}^m p_\alpha \left(\frac{t}{m}, z_j - z_{j-1} \right) \, dz_1 \cdots dz_m.
\]
Using rearrangement inequalities one can prove that,

\[\int_D \cdots \int_D \prod_{j=1}^m \left(\frac{t}{m}, z_j - z_{j-1} \right) \, dz_1 \cdots dz_m \]

\[\leq \int_{D^*} \cdots \int_{D^*} p_{\alpha} \left(\frac{t}{m}, z_1 \right) \prod_{j=2}^m p_{\alpha} \left(\frac{t}{m}, z_j - z_{j-1} \right) \, dz_1 \cdots dz_m. \]

Theorem (Luttinger 73)

Let \(f_j, 1 \leq j \leq r \) be nonnegative functions in \(\mathbb{R}^d \) and \(f_j^* \) be the symmetric decreasing rearrangement of \(f_j \). Then for any \(z_0 \in \mathbb{R}^d \) we have

\[\int_D \cdots \int_D \prod_{j=1}^m f_j (z_j - z_{j-1}) \, dz_1 \cdots dz_m \leq \]

\[\int_{D^*} \cdots \int_{D^*} f_1^* (z_1) \prod_{j=2}^m f_j^* (z_j - z_{j-1}) \, dz_1 \cdots dz_m. \]
Symmetric decreasing rearrangements

Given $f \geq 0$, its symmetric decreasing rearrangement f^* is the function satisfying

$$f^*(x) = f^*(y), \text{ if } |x| = |y|,$$

$$f^*(x) \leq f^*(y), \text{ if } |x| \geq |y|,$$

and

$$m\{f > t\} = m\{f^* > t\}, \text{ same distribution}$$

for all $t \geq 0$. In particular

$$(\chi_D)^* = \chi_{D^*}.$$

If $m\{f > t\} < \infty$, then

$$f^*(x) = \int_0^\infty \chi_{\{|f| > t\}}(x) \, dt.$$
Theorem (Brascamp-Lieb-Luttinger)

Let \(p_j, 1 \leq j \leq r \) be nonnegative functions in \(\mathbb{R}^d \) and \(p_j^* \) be the symmetric decreasing rearrangement of \(p_j \). Let \(a_{jk} \) be a \(r \times m \) real matrix.

\[
\int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} \prod_{j=1}^{r} p_j \left(\sum_{k=1}^{m} a_{j,k} z_k \right) \, dz_1 \cdots dz_m \leq \\
\int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} \prod_{j=1}^{r} p_j^* \left(\sum_{k=1}^{m} a_{j,k} z_k \right) \, dz_1 \cdots dz_m.
\]

Thus, if \(X_t \) is a symmetric \(\alpha \)-stable processes in \(\mathbb{R}^d \), for all \(z \in D \)

\[
P^z \left(X_{\frac{t}{m}} \in D, X_{\frac{2t}{m}} \in D, \ldots, X_{\frac{mt}{m}} \in D \right) \leq \ P^0 \left(X_{\frac{t}{m}} \in D^*, X_{\frac{2t}{m}} \in D^*, \ldots, X_{\frac{mt}{m}} \in D^* \right).
\]

Proved by many, first appearance for Brownian Motion Aizenman and Simon 80.
Question

Under what conditions, if X_t is a Lévy processes in \mathbb{R}^d,

$$P^z \left(X_{\frac{t}{m}} \in D, X_{\frac{2t}{m}} \in D, \ldots, X_{\frac{mt}{m}} \in D \right) \leq P^0 \left(X_{\frac{t}{m}} \in D^*, X_{\frac{2t}{m}} \in D^*, \ldots, X_{\frac{mt}{m}} \in D^* \right).$$

for all $z \in D$.
Under what conditions, if X_t is a Lévy processes in \mathbb{R}^d,

$$P^z \left(X_{\frac{t}{m}} \in D, X_{\frac{2t}{m}} \in D, \ldots, X_{\frac{mt}{m}} \in D \right) \leq P^0 \left(X_{\frac{t}{m}} \in D^*, X_{\frac{2t}{m}} \in D^*, \ldots, X_{\frac{mt}{m}} \in D^* \right).$$

for all $z \in D$.

Same proof: If X_t has transition densities such that

$$p^X(t, x, y) = f_X(|x - y|),$$

with f_X decreasing (Isotropic Unimodal). Then

$$P^z \left(X_{\frac{t}{m}} \in D, X_{\frac{2t}{m}} \in D, \ldots, X_{\frac{mt}{m}} \in D \right) \leq P^0 \left(X_{\frac{t}{m}} \in D^*, X_{\frac{2t}{m}} \in D^*, \ldots, X_{\frac{mt}{m}} \in D^* \right).$$
How far can you extend this inequality

Not true in general. Using the same argument if \(X_t \) has transition densities \(p^X(t, x, y) \). We need

\[
\int_D \cdots \int_D \prod_{j=1}^m p^X\left(\frac{t}{m}, z_j - z_{j-1}\right) \, dz_1 \cdots dz_m
\]

\[
= P^{z_0}\left(X_{\frac{t}{m}} \in D, X_{\frac{2t}{m}} \in D, \ldots, X_{\frac{mt}{m}} \in D \right)
\]

\[
\leq \int_{D^*} \cdots \int_{D^*} \left[p^X\left(\frac{t}{m}, z_1\right) \right]^* \prod_{j=2}^m \left[p^X\left(\frac{t}{m}, z_j - z_{j-1}\right) \right]^* \, dz_1 \cdots dz_m.
\]

Problem: We cannot even ensure that

\[
[p(t, \cdot, y)]^*,
\]

is the transition density of a Lévy process.
Let X_t be a Lévy process in \mathbb{R}^d such that

$$E^x \left[e^{-i\xi \cdot X_t} \right] = e^{-t\Psi(\xi) - i\xi \cdot x},$$

where

$$\Psi(\xi) = -i\langle b, \xi \rangle + \frac{1}{2} \langle A \cdot \xi, \xi \rangle + \int_{\mathbb{R}^d} \left[1 + i\langle \xi, y \rangle \chi_B - e^{i\xi \cdot y} \right] \phi(y) \, dy.$$

Consider X_t^* the Lévy process in \mathbb{R}^d given by

$$E^x \left[e^{-i\xi \cdot X_t^*} \right] = e^{-t\Psi^*(\xi) - i\xi \cdot x},$$

where

$$\Psi^*(\xi) = \frac{1}{2} \langle A^* \cdot \xi, \xi \rangle + \int_{\mathbb{R}^d} \left[1 - e^{i\xi \cdot y} \right] \phi^*(y) \, dy.$$
Theorem (Bañuelos-Méndez 10)

Suppose X_t is a Lévy process with Lévy measure absolutely continuous with respect to the Lebesgue measure and let X_t^* be the symmetrization of X_t constructed as above. Let f_1, \ldots, f_m be nonnegative lower semicontinuous functions. Then for all $z \in \mathbb{R}^d$,

$$E^z \left[\prod_{i=1}^{m} f_i(X_{t_i}) \chi_{D_i}(X_{t_i}) \right] \leq E^0 \left[\prod_{i=1}^{m} f^*_i(X_{t_i}^*) \chi_{D_i^*}(X_{t_i}^*) \right],$$

for all $0 \leq t_1 \leq \ldots \leq t_m$.

Suppose X_t is a Lévy process with Lévy measure absolutely continuous with respect to the Lebesgue measure and let X_t^* be the symmetrization of X_t constructed as above. Let f_1, \ldots, f_m be nonnegative lower semicontinuous functions. Then for all $z \in \mathbb{R}^d$,

$$E^z \left[\prod_{i=1}^m f_i(X_{t_i}) \chi_{D_i}(X_{t_i}) \right] \leq E^0 \left[\prod_{i=1}^m f_i^*(X_{t_i}^*) \chi_{D_i^*}(X_{t_i}^*) \right],$$

for all $0 \leq t_1 \leq \ldots \leq t_m$.

The proof is based on the fact that X_t is the week limit of processes of the form

$$X^n_t = C^n_t + G^n_t.$$

where C^n_t is a Compound Poisson Processes and G^n_t is a non-singular Gaussian processes.
Let τ^X_D be the first exit time of X_t from D, then

- If $V \geq 0$ and f are continuous,

$$E^z \left\{ f(X_t) \exp \left(- \int_0^t V(X_s) ds \right) ; \tau^X_D > t \right\} \leq E^z \left\{ f^*(X_t) \exp \left(- \int_0^t V^*(X_s) ds \right) ; \tau^X_D^* > t \right\}$$

where $V^*_* = - (-V)^*$.

- If ψ is a nonnegative increasing function, then

$$E^z \left[\psi \left(\tau^X_D \right) \right] \leq E^0 \left[\psi \left(\tau^X_D^* \right) \right],$$

In particular, for all $0 < p < \infty$,

$$E^z \left[\left(\tau^X_D \right)^p \right] \leq E^0 \left[\left(\tau^X_D^* \right)^p \right].$$
If \(p_D^X(t, x, y) \) is the transition density of \(X_t \) killed upon leaving \(D \), then

\[
\int_D f(y) p_D^X(t, x, y) \, dy \leq \int_{D^*} f^*(y) p_{D^*}^X(t, 0, y) \, dy. \tag{1}
\]

In particular for all \(x, y \in D \)

\[
p_D^X(t, x, y) \leq p_{D^*}^X(t, 0, 0),
\]

If \(X_t \) and \(X_t^* \) are transient then

\[
\int_D f(z) G_D^X(x, z) \, dz \leq \int_{D^*} f^*(z) G_{D^*}^X(0, z) \, dz. \tag{2}
\]

For all increasing convex function \(\phi : \mathbb{R}^+ \to \mathbb{R}^+ \)

\[
\int_D \phi \left(p_D^X(t, x, y) \right) \, dy \leq \int_{D^*} \phi \left(p_{D^*}^X(t, 0, y) \right) \, dy
\]

\[
\int_D \phi \left(G_D^X(x, z) \right) \, dz \leq \int_{D^*} \phi \left(G_{D^*}^X(0, z) \right) \, dz.
\]
• Isoperimetric inequality for the trace

\[\sum_{i=1}^{\infty} e^{-t\lambda_{D^*}^{k,X}} = \int_{D} p_{D}^{X}(t, z, z) dz \leq \int_{D^*} p_{D^*}^{X^*}(t, z, z) dz = \sum_{i=1}^{\infty} e^{-t\lambda_{D^*}^{k,X^*}}. \]

• Rayleigh-Faber-Krahn Inequality

\[\lambda_{1}^{1,X^*} \leq \lambda_{1}^{1,X}. \]

• The Gamma function, for all \(s > \frac{d}{\alpha} \)

\[\sum_{i=1}^{\infty} \frac{1}{\left(\lambda_{D}^{k,X}\right)^{s}} \leq \sum_{i=1}^{\infty} \frac{1}{\left(\lambda_{D^*}^{k,X^*}\right)^{s}}. \]
Consider a Lévy process of the form

\[X_t = C_t + G_t, \]

where

- \(G_t \) is a Gaussian process with covariance matrix \(A \), and mean \(m \).
- \(C_t \) is an independent compound Poisson process with characteristic function

\[E \left(e^{i \xi \cdot C_t} \right) = \exp \left\{ -c \int_{\mathbb{R}^d} \left[1 - \exp(i \xi \cdot y) \right] \phi(y) \, dy \right\}, \]

Then

\[X_t^* = C_t^* + G_t^*, \]

where

- \(G_t^* \) is a Gaussian process with covariance matrix \(A^* = (\text{det} A)^{1/d} I_d \).
- \(C_t^* \) is an independent compound Poisson process with characteristic function

\[E \left(e^{i \xi \cdot C_t^*} \right) = \exp \left\{ -c \int_{\mathbb{R}^d} \left[1 - \exp(i \xi \cdot y) \right] \phi^*(y) \, dy \right\}. \]
Let B be a Borel subset of \mathbb{R}^d, then

$$E^x \left[C_t + G_t \in B \right] = \int_B f_{A,m}(t, u - x - x_0) \, d\mu_t(x_0) \, du,$$

where μ_t is the distribution of C_t, and $f_{A,m}$ is the density of G_t.

Pedro J. Méndez (UCR)
Symmetrization & Lévy processes
Levy 2010 18 / 25
Let B be a Borel subset of \mathbb{R}^d, then

$$E^x [C_t + G_t \in B] = \int_B f_{A,m}(t, u - x - x_0) \, d\mu_t(x_0) \, du,$$

where μ_t is the distribution of C_t, and $f_{A,m}$ is the density of G_t. One can prove that

$$\int_B f_{A,m}(t, u - x - x_0) \, d\mu_t(x_0) \, du = P[N_t = 0] \int_B f_{A,m}(t, u) \, du$$

$$+ \sum_{k=1}^{\infty} P[N_t = k] \int_B f_{A,m}(t, u - x - x_0) \, q_k(t, x_0) \, dx_0 \, du$$

where N_t is a Poisson process and

$$\int_B f_{A,m}(t, u - x - x_0) \, q_k(t, x_0) \, dx_0 \, du =$$

$$\int_B \int \cdots \int f_{A,m}(t, u - x - x_0) \prod_{i=1}^{k} \phi(x_i - x_{i-1}) dx_1 \cdots dx_k \, dx_0 \, du.$$
Then using B-L-L

\[
\int_B \int \cdots \int f_{A,m}(t, x - x_0) \prod_{i=1}^{k} \phi(x_i - x_{i-1}) \, dx_1 \cdots dx_k \, dx_0
\]

\[
\leq \int_{B^*} \int \cdots \int f_{A,m}^*(t, x_0) \prod_{i=1}^{k} \phi^*(x_i - x_{i-1}) \, dx_1 \cdots dx_k \, dx_0
\]

\[
= \int_{B^*} \int \cdots \int f_{A^*,0}(t, x_0) \prod_{i=1}^{k} \phi^*(x_i - x_{i-1}) \, dx_1 \cdots dx_k \, dx_0.
\]
Then using B-L-L

\[
\int_B \int \cdots \int f_{A,m}(t, x - x_0) \prod_{i=1}^{k} \phi(x_i - x_{i-1}) \, dx_1 \cdots dx_k \, dx_0
\]

\[
\leq \int_{B^*} \int \cdots \int f_{A,m}^*(t, x_0) \prod_{i=1}^{k} \phi^*(x_i - x_{i-1}) \, dx_1 \cdots dx_k \, dx_0
\]

\[
= \int_{B^*} \int \cdots \int f_{A^*,0}(t, x_0) \prod_{i=1}^{k} \phi^*(x_i - x_{i-1}) \, dx_1 \cdots dx_k \, dx_0.
\]

We conclude

\[
E^x \{ G_{t_1} + C_{t_1} \in D, \ldots, G_{t_m} + C_{t_m} \in D \} \leq
\]

\[
E^0 \{ G_{t_1}^* + C_{t_1}^* \in D^*, \ldots, G_{t_m}^* + C_{t_m}^* \in D^* \}.
\]

Then take a sequence \(X^n_t = C^n_t + G^n_t \) that converges weakly to \(X_t \).
If X_t has transition densities such that

$$p^X(t, x, y) = f_X(|x - y|),$$

with f_X decreasing. There are similar results for exit times of Lévy processes X_t from convex domains with fixed inner inradius r_D. Assume the biggest ball inside D is centered at 0.
If X_t has transition densities such that

$$p^X(t, x, y) = f_X(|x - y|),$$

with f_X decreasing. There are similar results for exit times of Lévy processes X_t from convex domains with fixed inner inradius r_D. Assume the biggest ball inside D is centered at 0.

Classical results:

Using the maximum principle for the Laplacian it is proved that

$$\lambda^B_{(-r_D, r_D)} \leq \lambda^B_D, \quad (\text{Hersh } n = 2\ 60, \text{ Protter } n \geq 2\ 81)$$

where B is Brownian motion.
Extremal for convex domains of fixed inradius for B.M.

Consider the infinite slab

\[S(D) = \left\{ (x_1, \ldots, x_d) \in \mathbb{R}^d : -r_D < x_1 < r_D \right\}. \]

Equivalently

\[\lambda^B_{(-r_D, r_D)} = \lambda^B_S(D). \]

Besides Bañuelos-Kröger 97 prove that

\[P^x(\tau^B_D > t) \leq P^0(\tau^B_S(D) > t) = P^0(\tau^B_{(-r_D, r_D)} > t). \]
Consider the infinite slab

\[S(D) = \left\{ (x_1, \ldots, x_d) \in \mathbb{R}^d : -r_D < x_1 < r_D \right\}. \]

Equivalently

\[\lambda^B_{(-r_D, r_D)} = \lambda^B_{S(D)}. \]

Besides Bañuelos-Kröger 97 prove that

\[P^x(\tau^B_D > t) \leq P^0(\tau^B_{S(D)} > t) = P^0(\tau^B_{(-r_D, r_D)} > t). \]

In a similar way we can reduced this problem to finite dimensional distributions. To obtained a similar result for \(X_t \), it is enought to prove that

\[P^x \left(X_{\frac{t}{m}} \in D, X_{\frac{2t}{m}} \in D, \ldots, X_{\frac{mt}{m}} \in D \right) \leq P^0 \left(X_{\frac{t}{m}} \in S(D), X_{\frac{2t}{m}} \in S(D), \ldots, X_{\frac{mt}{m}} \in S(D) \right). \]
Theorem Let D be a convex domain in \mathbb{R}^d of finite inradius r_D and let $S(D)$ be the infinite slab. Let p_1, \ldots, p_m be nonnegative nonincreasing radially symmetric functions on \mathbb{R}^d. Then for any $z_0 \in \mathbb{R}^d$ we have

\[
\int_D \cdots \int_D \prod_{j=1}^m p_j(z_j - z_{j-1}) \, dz_1 \cdots dz_m \leq \\
\int_{S(D)} \cdots \int_{S(D)} p_1(z_1) \prod_{j=2}^m p_j(z_j - z_{j-1}) \, dz_1 \cdots dz_m.
\]

(Bañuelos-Latała-Méndez 00 $d = 2$, Méndez 02 $d > 2$)
Theorem Let D be a convex domain in \mathbb{R}^d of finite inradius r_D and let $S(D)$ be the infinite slab. Let p_1, \ldots, p_m be nonnegative nonincreasing radially symmetric functions on \mathbb{R}^d. Then for any $z_0 \in \mathbb{R}^d$ we have

$$\int_D \cdots \int_D \prod_{j=1}^m p_j(z_j - z_{j-1}) \, dz_1 \cdots dz_m \leq \int_{S(D)} \cdots \int_{S(D)} p_1(z_1) \prod_{j=2}^m p_j(z_j - z_{j-1}) \, dz_1 \cdots dz_m.$$ \hspace{1cm} (4)

(Bañuelos-Latała-Méndez 00 $d = 2$, Méndez 02 $d > 2$)

Key in the proof:

1. D can be assume to be a polyhedron
2. Any nonnegative radially symmetric nonincreasing function f can be expressed in the form

$$f(z) = \int_0^\infty I_{B(0,r)}(z) \, d\mu(r)$$

for some nonnegative measure on $(0, \infty]$
Consequences

- For all $z \in D$

 \[E^z \left\{ \tau^X_D > t \right\} \leq E^0 \left\{ \tau^X_{S(D)} > t \right\}. \]

 Thus

 \[\lambda^X_{S(D)} \leq \lambda^X_D. \]

- If \(\psi \) is a nonnegative increasing function, then

 \[E^z \left[\psi \left(\tau^X_D \right) \right] \leq E^0 \left[\psi \left(\tau^X_{S(D)} \right) \right], \]

 In particular, for all $0 < p < \infty$,

 \[E^z \left[\left(\tau^X_D \right)^p \right] \leq E^0 \left[\left(\tau^X_{S(D)} \right)^p \right]. \]
Inequalities for the heat content and the torsional rigidity

\[\int_D \int_D p^X_D(t, z, w) \, dz \, dw \leq \int_{S(D)} \int_{S(D)} p^X_{S(D)}(t, z, w) \, dz \, dw, \]

\[\int_D \int_D G^X_D(z, w) \, dz \, dw \leq \int_{S(D)} \int_{S(D)} G^X_{S(D)}(z, w) \, dz \, dw. \]

For all increasing function \(\phi : \mathbb{R}^+ \to \mathbb{R}^+ \)

\[\int_D \phi \left(p^X_D(t, 0, y) \right) \, dy \leq \int_{S(D)} \phi \left(p^X_{S(D)}(t, 0, y) \right) \, dy \]

\[\int_D \phi \left(G^X_D(0, z) \right) \, dz \leq \int_{S(D)} \phi \left(G^X_{S(D)}(0, z) \right) \, dz. \]
Theorem (Méndez 02) Let D be a convex domain in \mathbb{R}^2 of finite inradius r_D and of diameter d_D (which may be infinite). Let $p_1, \ldots, p_m, q_1, \ldots, q_m$ be nonnegative nonincreasing radially symmetric functions on \mathbb{R}^2. Then for any $z_0 \in H_{i,j}$ we have that

$$\int_{D} \cdots \int_{D} \prod_{j=1}^{m} q_j(z_j)p_j(z_j - z_{j-1}) \, dz_1 \cdots dz_m \leq$$

$$\int_{C(D)} \cdots \int_{C(D)} q_j(z_1)p_j(z_1) \prod_{j=2}^{m} q_j(z_j)p_j(z_j - z_{j-1}) \, dz_1 \cdots dz_m,$$

where $C(D) = (-r_D, r_D) \times (-d_D + r_D, -r_D + d_D)$.

Question

Are there higher dimensional analogues? For instance can we replace $S(D)$ by

$$C(D) = (-r_D, r_D) \times (-d_D + r_D, r_D - d_D)^{d-1}.$$