The Connection between Stochastic Games and Constraint Satisfaction

Manuel Bodirsky, Institut für Algebra

Krippen, 28.3.2019

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 programme (grant agreement No. 681988)
Mean Payoff Games

Stochastic games: Shapley 1953

A stochastic mean payoff game is given by

- a finite directed graph \((V, E)\);
- a partition \(V = V_{\text{max}} \uplus V_{\text{min}} \uplus V_{\text{stoch}}\);
- a start vertex \(s\);
- a payoff function \(w: E \rightarrow \{-W, \ldots, 0, \ldots, +W\}\);
- two players min and max (a 2\(\frac{1}{2}\)-game).

A mean payoff game (MPG) has no stochastic vertices (a 2-player game).
The rules of the game

The players move a token along edges from E. On nodes from V_{max} it is max’ turn. On nodes from V_{min} it is min’s turn. One nodes from V_{stoch} an out-neighbour is chosen uniformly at random. The game continues forever. The long-run average payoff (or limiting average payoff) is defined to be

$$\liminf_{t \to \infty} \frac{1}{t} \sum_{i=1}^{t} w(u_{i-1}, u_i)$$

Goal of max (min): maximise (minimize) the long-run average. MGP as a decision problem: decide whether max has a winning strategy, i.e., a strategy that guarantees non-negative long-run average.

What is the computational complexity of mean payoff games?
Example

Stochastic Games and CSPs
Memoryless Strategies

A strategy is called memoryless (or positional) if the next move only depends on the current position (and not on the history of the previous moves).

Theorem (Ehrenfeucht+Mycielski).

Both players in a mean payoff game have optimal memoryless strategies.

Corollary: Mean payoff games is in NP.

- Guess a memoryless strategy σ for max.
- Remove all edges not chosen by max; let G_σ be the resulting graph.
- min is looking in G_σ for a path leading to a negative cycle.

This can be done in time $O(|V| \cdot |E|)$ by the Bellman-Ford algorithm.
Containment in coNP

Corollary: Mean payoff games are in coNP.

- Guess a memoryless strategy σ for min.
- Remove all edges not chosen by min; let G_σ be the resulting graph.
- max is looking in G_σ for a reachable cycle with maximum mean weight.
- This can be done in time $O(|V| \cdot |E|)$ by Karp’s algorithm for the maximum mean weight cycle and testing reachability.

Remarks.

- Mean payoff games not known to be in P!
- Problems in $\text{NP} \cap \text{coNP}$ that are not known to be in P are rare.
- Already the special case of *parity games* is not known to be in P. Parity games are equivalent to model-checking for the μ-calculus. Recent breakthrough (Calude, Jain, Khoussainov, Li, Stephan’17): quasipolynomial algorithm (in $O(n^{\log(W)+6})$).
Exercise

Play with one of your neighbours:

1. Invent on paper a mean payoff game G including a start vertex s.
2. Give the paper to your neighbour.
3. Your neighbour decides whether (s)he wants to be player max or player min in this game.
4. Expose a memoryless strategy.
5. Your neighbour exposes a memoryless strategy.
6. Check who is the winner.
Max-Atoms

And/Or Precedence Constraints (Möhring+Stork+Skutella’04) aka Max-Atom Problem (Bezem+Nieuwenhuis+Rodriguez-Charbonell’08) equiv to Emptyness of Tropical Polyhedra (Akian+Gaubert+Guterman’11) equiv to Solvability of Tropical Linear Systems (Grigoriev+Podelskii’15):

Definition (Max-Atoms).

Input: A finite set of variables V, and a finite set of constraints

$$x \leq \max(y, z) + c$$

where $x, y, z \in V$ and $c \in \mathbb{Z}$ is represented in binary.

Question: Is there a mapping $V \rightarrow \mathbb{Q}$ that satisfies all constraints?

- MSS’04, BNR’08, AGG’11: in coNP.
- MSS’04, Atserias+Maneva’09, AGG’11:

Max-Atoms \equiv_p Mean Payoff Games
Equivalence MPGs and Max-Atom

Max-Atoms \(\equiv_p\) Mean Payoff Games: why should we care?

- Both reductions are natural, elegant, easy
- The correctness proof of the reductions is surprisingly complicated
- Side-product: new proof for the existence of memoryless strategies!
- The correspondence is the starting point for important generalisations of both MPGs and Max-Atom.
- Personal claim: CSP techniques will lead to a proof that MGPs are in P.
Massaging MPGs

Work with computationally equivalent variant MPG*: decide whether max has a winning strategy for every starting vertex.

- Reduction from MPG* to MPGs:
 introduce start vertex $s \in V_{\text{min}}$ with edges to each $v \in V_{\text{max}}$.

- Reduction from MPGs to MPG*:
 add an edge of weight 0 from every $v \in V_{\text{max}}$ to start vertex s.
Massaging Max-Atoms

Observations.

- $x \leq \max(y_1, y_2, y_3)$ has the primitive positive definition
 $$\exists z (x \leq \max(y_1, z) \land z \leq \max(y_2, y_3)).$$

- $x \leq \max(y_1 + c_1, y_2 + c_2)$ has the primitive positive definition
 $$\exists z (x \leq \max(y_1, z) + c_1 \land z \leq \max(y_2, y_2) + (c_2 - c_1)) .$$
 i.e., $z \leq y_2 + c_2 - c_1$

- $x \leq \min(y_1 + c_1, \ldots, y_k + c_k)$ has the primitive positive definition
 $$x \leq \max(y_1, y_1) + c_1 \land \cdots \land x \leq \max(y_k, y_k) + c_k.$$
Let ϕ be a max-atoms instance.

Lemma.

Suppose that $s: V \rightarrow \mathbb{Q}$ is a solution to ϕ. Then for any $d \in \mathbb{Q}$

$$x \mapsto s(x) + d$$

is a solution to ϕ, too. Suppose that $s_1, s_2: V \rightarrow \mathbb{Q}$ are solutions to ϕ. Then

$$x \mapsto \max(s_1(x), s_2(x))$$

is a solution to ϕ, too.

$$R_c^{\text{max}} := \{(x, y, z) \mid x \leq \max(y, z) + c\}$$

The structure $(\mathbb{Q}; (R_c^{\text{max}})_{c \in \mathbb{Q}})$ has the polymorphisms

$(x, y) \mapsto \max(x, y)$

and $x \mapsto x + d$ for all $d \in \mathbb{Q}$.
Max-Atoms: Important Properties

A max-atom instance ϕ is called **left-distinct** if for any two conjuncts of ϕ

$$x_1 \leq \max(y_1, z_1) + c_1$$

and

$$x_2 \leq \max(y_2, z_2) + c_2$$

the head variables x_1 and x_2 are distinct.

Lemma (Bezem+Nieuvenhuis+Rodriguez-Charbonell’08).

ϕ is unsatisfiable \iff ϕ contains a left-distinct unsatisfiable subset.

Example.

$$x \leq \max(y, z)$$

$$y \leq \max(x, z)$$

$$z \leq \max(x, x) + 2$$

$$z \leq \max(y, y) + 1$$
Left-distinct unsatisfiability certificates

Let ϕ be a max-atoms instance and x a variable of ϕ. Let ψ_1, \ldots, ψ_k be all conjuncts of ϕ with head x.

Claim. If ϕ is unsatisfiable, then $\phi \setminus \psi_i$ is for some $i \leq k$ unsatisfiable.

Proof: Assume that for every $i \leq k$ the formula $\phi \setminus \psi_i$ has solution s_i.

Produce solution to ϕ using translations and max:

$$x \leq \max(y, z) + 1 \land x \leq \max(u, v) + 2$$

s_1:

$$x = 1, y = 2, z = 3, u = ?, v = ?$$

s_2:

$$x = 2, y = ?, z = ?, u = 8, v = 3$$

Translate s_2:

s_3:

$$x = 1, y = ?, z = ?, u = 7, v = 2$$

Max s_1, s_3:

s_4:

$$x = 1, y \geq 2, z \geq 3, u \geq 8, v \geq 3$$

Lemma follows by induction.\[\square\]
Max-Atoms: Pseudo-Polynomial Algorithm

Suppose that all conjuncts of max-atom instance ϕ are of the form

$$x \leq \max(y, z) + 1.$$

There is a polynomial-time algorithm to decide satisfiability of ϕ.

Theorem (Bodirsky, Martin, Mottet’18).

Let $\Gamma = (\mathbb{Z}; R_1, R_2, \ldots, R_m)$ be a structure with a fo-definition over $(\mathbb{Z}; <)$. If Γ has max or min or (\ldots) as polymorphism, then $\text{CSP}(\Gamma)$ is in P. Otherwise, $\text{CSP}(\Gamma)$ is NP-complete.

Algorithm (in case that Γ has polymorphism max):

- Let S be a **sufficiently big** finite substructure of Γ.
- Note: S has max as polymorphism, too!
- Solve ϕ as an instance of $\text{CSP}(S)$.
- For that, use **Arc-Consistency Algorithm**
 - **Fact**: answers correctly since S has max as polymorphism.
 - has polynomial running time in both ϕ and S.

Stochastic Games and CSPs
From Mean Payoff Games To Max-Atoms

Let $G = (V, V_{\text{max}}, V_{\text{min}}, w, s)$ be an MPG.

We create a max-atoms instance ϕ_G with variables V:

1. For each $v \in V_{\text{max}}$ with out-neighbours u_1, \ldots, u_k, add a constraint
 \[v \leq \max(u_1 + w(v, u_1), \ldots, u_k + w(v, u_k)) \]

2. For each $v \in V_{\text{min}}$ with out-neighbours u_1, \ldots, u_k, add a constraint
 \[v \leq \min(u_1 + w(v, u_1), \ldots, u_k + w(v, u_k)) \]

(These constraints can be expressed by Max-Atom constraints.)
From Max-Atoms to Mean Payoff Games

Let ϕ be a max-atoms instance with variables V and inequalities C.

Create an MPG G_ϕ such that $V_{\text{max}} := V$ and $V_{\text{min}} := C$, and

- If $e \in C$ is of the form $x \leq \max(y, z) + k$
 add edges $(e, y), (e, z)$ of weight k;
- For every $x \in V$ and every $e \in C$
 of the form $x \leq \max(y, z) + c$
 add an edge (x, e) of weight 0.
Max-atom are polynomial-time equivalent to system with n variables x_1, \ldots, x_n and n constraints e_1, \ldots, e_n where e_i is of the form

\[x_i \leq \max(x_{i_1} + c_1, \ldots, x_{i_k} + c_k) \]

or

\[x_i \leq \min(x_{i_1} + c_1, \ldots, x_{i_k} + c_k) \]

‘Max-min offset operator system’
For those systems, the correspondence is particularly nice:

\[x_s \leq \max(x_1 + 1, x_3 + 1) \]
\[x_2 \leq \max(x_1 - 1, x_3 - 1) \]
\[x_1 \leq \min(x_s - 1, x_2 - 1) \]
\[x_3 \leq \min(x_s + 1, x_2 + 1) \]
Have to prove:

1. max wins on G iff ϕ_G satisfiable.
2. ϕ satisfiable iff max wins on G_ϕ.

Idea: suffices to prove correctness of 2!

Reason: reduction is such that $G_{\phi_G} = G$.

\[
\text{max wins on } G \text{ iff max wins on } G_{\phi_G} \text{ iff } \phi_G \text{ is satisfiable (by 2)}
\]
Want to prove: A max-atoms instance ϕ is satisfiable iff max wins on G_ϕ.

Idea: To prove \Rightarrow, let $s: V \to \mathbb{Q}$ be a solution to ϕ.
For each constraint $x \leq \max(y_1 + c_1, \ldots, y_k + c_k)$
let $i \leq k$ be such that $y_i + c_i = \max(y_1 + c_1, \ldots, y_k + c_k)$.

Claim: the (memoryless!) strategy for max that always moves from x to y_i wins against any strategy of min.

Idea: To prove \Leftarrow, suppose that ϕ is unsatisfiable. Then ϕ contains an unsatisfiable left-distinct subset ψ.

Claim. ψ corresponds to a (memoryless) strategy for min.
Extensions?

Questions:
- which extensions of the max-atom problem remain in $\text{NP} \cap \text{coNP}$?
- which other relations over \mathbb{Q} are preserved by max and translations?
- which other relations over \mathbb{Q} are preserved by max?
Semilinear Relations

Definition.

$R \subseteq \mathbb{Q}^k$ is semilinear if R has a first-order definition in $(\mathbb{Q}; +, 1, \leq)$.

Ferrante and Rackoff’75: A relation is semilinear if and only if it is a finite intersection of finite unions of (open or closed) linear half spaces.

- CSP$(\mathbb{Q}; \leq, R_+, R_{=1})$ where $R_+ := \{(x, y, z) \mid x = y + z\}$ and $R_{=1} := \{1\}$ is essentially linear program feasibility.
- All CSPs with semi-linear constraints are in NP: guess one half space per union and verify satisfiability of resulting system of linear inequalities.
- Every finite-domain CSP falls into this class.

Big challenge:

Classify the complexity of CSP$(\mathbb{Q}; R_1, \ldots, R_n)$ for all semilinear relations R_1, \ldots, R_n.
Tropically Convex Sets

Definition (Develin-Sturmfels’04).

A subset R of \mathbb{Q}^n is called tropically convex if

- R is preserved by max, and
- R is preserved by all translations $x \mapsto x + c$ for all $c \in \mathbb{Q}$.

- For every $c \in \mathbb{Q}$ the max-atom relation R_c^{max} is tropically convex
- $x \leq (y + z)/2$ is tropically convex
- $x \leq y + z$ is preserved by max, but not tropically convex.

Theorem (B+Mamino’15).

Let S_1, \ldots, S_n be tropically convex semilinear relations.
Then $\text{CSP}(\mathbb{Q}; S_1, \ldots, S_n)$ is in $\text{NP} \cap \text{coNP}$.
Step 1: Syntax

Can we find a syntactic description of the relations preserved by max?

Fact: a relation $R \subseteq \{0, 1\}^n$ is preserved by max if and only if the complement of R has a Horn definition.

\[\text{e.g. } '(-x \lor -y \lor z) \land (-x \lor -u)' \]

For subsets of \mathbb{Q}^2, max-closed sets can be more complicated:
Step 1: Syntax

Theorem (B-Mamino’15).

Let \(R \subseteq \mathbb{Q}^n \) be semilinear and topologically closed. The following are equivalent:

- \(R \) is preserved by \(\max \)
- \(R \) can be defined by a conjunction of expressions of the form
 \[
 x \leq \max(a_1 \bar{x} + b_1, \ldots, a_m \bar{x} + b_m)
 \]
 where \(m \in \mathbb{N} \), each of \(a_1, \ldots, a_m \) is a vector from \(\mathbb{Q}^n_{\geq 0} \), and \(b_1, \ldots, b_n \in \mathbb{Q} \);
- \(R \) has a primitive positive definition over \((\mathbb{Q}; <, \{1\}, \{-1\}, S_1, S_2, S_3) \) where
 \[
 S_1 := \{(x, y) : 2x \leq y\}
 \]
 \[
 S_2 := \{(x, y, z) : x \leq y + z\}
 \]
 \[
 S_3 := \{(x, y, z) : x \leq \max(y, z)\}
 \]

Theorem can be generalised to non-closed case.
Theorem (B-Mamino’15).

Let $R \subseteq \mathbb{Q}^n$ be semilinear and topologically closed. The following are equivalent:

- R is tropically convex.
- R can be defined by a conjunction of expressions of the form

 \[x \leq \max(a_1 \bar{x} + b_1, \ldots, a_m \bar{x} + b_m) \]

 where $m \in \mathbb{N}$, $a_1, \ldots, a_m \in \mathbb{Q}_{\geq 0}^n$ are $\sum_{i \leq n} a_{j,i} = 1$ for all $j \leq n$, and $b_1, \ldots, b_n \in \mathbb{Q}$;

- R has a primitive positive definition in $(\mathbb{Q}; S_3, T_{1}, T_{-1}, S_4)$ where

 \[T_{\pm 1} := \{(x, y) : x \leq y \pm 1\} \]
 \[S_4 := \{(x, y, z) : x \leq (y + z)/2\}. \]
Step 2: Duality for Max-Plus-Average Ineqs

Tropically convex CSPs can be reduced to:

\(P: \) a system of \(n \) strict inequalities on \(n \) variables, each having one the following three forms

\[
\begin{align*}
 x_i &< \max(x_{j_1} + k_1, \ldots, x_{j_m} + k_m) \\
 x_i &< \min(x_{j_1} + k_1, \ldots, x_{j_m} + k_m) \\
 x_i &< (\alpha_1 x_{j_1} + \cdots + \alpha_m x_{j_m}) / (\alpha_1 + \cdots + \alpha_m) + k
\end{align*}
\]

where \(\alpha_1, \ldots, \alpha_m > 0. \)

The dual \(D \) of \(P \): replace \(< \) by \(\geq \).

Theorem (B+Mamino’15).

\(P \) has a solution in \(\mathbb{Q}^n \) if and only if \(D \) has no solution in \((\mathbb{Q} \cup \{+\infty\})^n \setminus \{+\infty\}^n \).

Consequence: satisfiability of \(P \) is in \(\text{NP} \cap \text{coNP} \).

Proof: Connection to stochastic MPGs.
Let P be the system of n constraints on n variables, and D its dual. P corresponds to game:

- max inequalities \leftrightarrow max vertices.
- min inequalities \leftrightarrow min vertices.
- inequalities $x_i < (\alpha_1 x_j + \cdots + \alpha_m x_{j_m}) / (\alpha_1 + \cdots + \alpha_m) + c$
 \leftrightarrow stochastic vertices with probabilities $\alpha_1, \ldots, \alpha_m$.

$v(x)$: expected limiting average payoff of game G, starting in x.

Theorem (B+Mamino’15).

- D is satisfiable if and only if $v(x_i) \leq 0$ for some vertex x_i of G.
- P is satisfiable if and only if $v(x_i) > 0$ for all vertices x_i of G.

This implies the duality theorem.
Overview State of the Art

- **Semilinear CSPs**
 - **Max-closed semilinear CSPs**
 - **Tropically convex CSPs**
 - **Max-Atom Problem**
 - **Stochastic mean payoff games**
 - **Mean payoff Games**
 - **Parity games**
 - **Propositional μ-calculus**

- **Quasi-polynomial algorithms**

- **NP-hard**
 - **?**
 - **$\mathsf{NP} \cap \mathsf{co-NP}$**
 - **Pseudo-polynomial**