Reading group: proof of the PCP theorem*

1 The PCP Theorem

The usual formulation of the PCP theorem is equivalent to:

Theorem 1. There exists a finite constraint language \(\mathcal{A} \) such that the following problem is NP-hard: given a CSP(\(\mathcal{A} \))-instance \(\Phi \) decide if \(\Phi \) is satisfiable or if every subset of the constraints of size \(|\Phi|/2\) is unsatisfiable.

The problem in the statement is also called GapCSP(\(\mathcal{A} \)).

2 The Label Cover Problem

Let \(\Sigma \) be a finite alphabet. An instance of the label cover problem for \(\Sigma \) is:

- a bipartite graph \((V_1, V_2, E)\),
- for every \((u, v) \in E\), a function \(\pi_{u,v} : \Sigma \rightarrow \Sigma\).

A solution to an instance is a pair of mappings \(s_1 : V_1 \rightarrow \Sigma\) and \(s_2 : V_2 \rightarrow \Sigma\) such that for all \((u, v) \in E\), \(\pi_{u,v}(s_1(u)) = s_2(v)\).

Proposition 1. Label cover over a 3-element alphabet is NP-hard.

Definition 1. A (strong) Mal’cev condition \((\mathcal{L}, \Sigma)\) where \(\mathcal{L}\) is a finite functional language and \(\Sigma\) is a finite set of identities over \(\mathcal{L}\).

Example 1. \(m(x,x,y) \approx m(y,x,x) \approx y\) with \(\mathcal{L} = \{m\}\).

Definition 2. A Mal’cev condition \((\mathcal{L}, \Sigma)\) is satisfied in a clone \(\mathcal{C}\) if there is a mapping \(\xi : \mathcal{L} \rightarrow \mathcal{C}\) such that \(\xi(\mathcal{L}) \models \Sigma\).

A Mal’cev condition is said to be trivial if one of the following equivalent statements hold:

1. it is satisfied in the clone of projections,
2. it is satisfied in every clone,

*Notes as of December 4, 2017. Report mistakes to antoine.mottet@tu-dresden.de.
3. it is satisfied in Pol(1-in-3-SAT).

A Mal'cev condition is said to be bipartite if there is a partition $L = L_1 \cup L_2$ such that every identity is of the form $f(\text{variables}) \approx g(\text{variables})$ with $f \in L_1$ and $g \in L_2$. It is special bipartite if it is of the form $f(\text{variables}) \approx g(x_1, \ldots, x_n)$ (all variables are different in the right-hand side).

Proposition 2. It is NP-hard to decide whether a height 1 special bipartite Mal'cev condition is trivial.

We first prove that the two problems are equivalent up to polytime reductions.

The translation from the Mal'cev problem to LC(Σ) is as follows. The vertices (V_1, V_2) correspond to (L_1, L_2). A set of identities E gives an edge relation on $V_1 \cup V_2$. Given an edge $f(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}) \approx g(x_1, \ldots, x_n)$, we take $\pi_{f,g}$ to be π.

Was the other reduction given?

Proof of Proposition 2. We even prove that the even more special case of height 1 bipartite special ternary in two variables is NP-hard.

We reduce 1-in-3-SAT to this problem. Let V, C be an instance of 1-in-3-SAT. We take L_2 to be the set of variables. We take L_1 to contain one symbol f_C for each constraint $C(x_{i_1}, x_{i_2}, x_{i_3})$ in C. We add the equalities $f_C(x, x, y) \approx g_{i_3}(x, y)$, $f_C(x, y, x) \approx g_{i_2}$, and $f_C(y, x, x) \approx g_{i_1}$. □

Definition 3. The GapLabelCover$_\epsilon$(Σ) problem is as follows: given an LC(Σ)-instance, decide if it is solvable, or if no ϵ-part is solvable.

Theorem 2. For all $\epsilon > 0$, there exists Σ such that GapLabelCover$_\epsilon$(Σ) is NP-hard.

Be convinced that PCP implies that there exist $\epsilon \in (0, 1)$ and Σ such that GapLabelCover$_\epsilon$(Σ) is NP-hard. Parallel repetition (no time to formalize) gives a way to turn ϵ into any number in $(0, 1)$.

3 Expander graphs: Marcello Mamino

“I only have two hours to talk so let’s get on with it.”

Marcello Mamino

We want to prove: fix finite domain Σ and let Γ be the full binary constraint language on Σ. We prove: the classical problem CSP(Γ) reduces in polynomial-time to GapCSP(Γ).

More precisely. Let Φ be an instance of CSP(Γ) that is unsatisfiable, but a big portion of the constraints are simultaneously satisfiable. We want to construct a new instance Ψ such that at most half of the constraints are satisfiable. Let n be the number of constraints of Φ. The gap of Φ is the smallest number...
\[\alpha \in [0,1] \] such that a part of \(\Phi \) of size \((1 - \alpha)n\) is satisfiable. If \(\Phi \) is not satisfiable, the gap is \(> 0 \). We amplify this gap by multiplying it repeatedly by a constant \(k \), which is meant to be independent of the size of \(\Phi \).

At each step, suppose that our instance grows by a factor of \(h \) (independent of \(|\Phi|\) as well). This means that the size of the instance grows as \(h^{\text{number of steps}} \sim n^{1 \log h(k)} \).

Strategic goal: \(\exists \Sigma, k > 1, h, \alpha \) such that we can effectively translate an instance of \(\text{CSP}(\Gamma) \) of gap \(x < \alpha \) to one of gap \(xk \) and size not larger than \(h \times \) original size.

We define the **product** of two instances \(\Phi_1(\pi) \) and \(\Phi_2(\eta) \). It contains as variables \(x_1, \ldots, x_n \) and \(y_1, \ldots, y_m \) and constraints \(R(\pi') \land S(\eta') \) (of arity \(\text{len}(\pi') + \text{len}(\eta') \)) for every pair of constraint \(R(\pi') \) and \(S(\eta') \) from \(\Phi_1 \) and \(\Phi_2 \).

Claim. If \(\alpha \) is the gap of \(\Phi_1 \) and \(\Phi_2 \), then gap of the product is \(1 - (1 - \alpha)^2 \).

Proof. Easy, just project on each coordinate, this gives subsets of each instance with relative size at most \((1 - \alpha)\).

This proves that once we manage to go from a gap that depends on \(\Phi \) to the \(\alpha \) from the statement (which is a constant), then we can also go to \(\frac{1}{2} \) by iterated squaring (a constant number of times).

Let’s now go back to the strategic goal. One step to reduce the gap is composed of the following substeps:

1. Regularize the graph (i.e., turn it into an **expander**).
2. Increase the gap (this causes the domain size of increase).
3. Shrink the domain.

Expanders are used at every step of this strategy.

Definition 4 (Expansion ratio). Let \(G \) be a graph. The **edge expansion ratio** of \(G \), denoted by \(h(G) \), is defined as

\[
\min_{S \subseteq G, |S| \leq |V(G)|} \frac{|E(S, \overline{S})|}{|S|},
\]

where \(E(S, \overline{S}) \) is the set of edges with one endpoint in \(S \) and the other endpoint in \(\overline{S} \).

Little game of the expanders: find infinite families of \(d \)-regular graphs with \(h(G) \geq \alpha > 0 \). It’s easy to build such a family by a probabilistic argument, but we would like to compute them efficiently and deterministically.

Let \(M(G) \) be the adjacency matrix of a \(d \)-regular graph \(G \). This is a symmetric matrix with nonnegative integer entries, where the entry \((v, w)\) for \(v, w \in G \) counts the number of edges between \(v \) and \(w \). Take \(\frac{1}{d} M(G) \), which is a bistochastic matrix. Being a symmetric real matrix, it is diagonalisable as \(A \times \text{diag}(1, \lambda_2, \ldots, \lambda_{|G|}) \times A^{-1} \) with \(1 \geq \lambda_2 \geq \cdots \geq \lambda_{|G|} \) being the eigenvalues of \(\frac{1}{d} M(G) \).
Exercise. Remember that the spectral radius of a stochastic matrix is precisely 1. Prove that \(-1\) is an eigenvalue iff the graph is bipartite.

Definition 5. The spectral gap of \(G\) is defined to be \(1 - \lambda_2\). We also also define it as \(\min(1 - |\lambda_2|, 1 - |\lambda_G|)\).

Remark: if \(v\) is a probability distribution on \(V(G)\), a random walk with \(n\) steps gives the distribution \((\frac{1}{2}M(G))^nv\), and the matrix \((\frac{1}{2}M(G))^n\) looks like \(A \text{ diag}(1, \lambda_2, \ldots, \lambda_{n_G}) A^{-1}\), where the diagonal converges quickly to \(\text{diag}(1, 0, \ldots, 0)\).

Theorem 3. For every \(d\)-regular finite graph \(G\) with second greatest associated eigenvalue \(\lambda_2\), we have

\[
d\frac{1 - \lambda_2}{2} \leq h(G) \leq d\sqrt{1 - \lambda_2}.
\]

Proof. Part 1: We prove the second inequality. Construct the matrix \(N\) with rows \(V\) and columns \(E\). Fix an arbitrary orientation on \(G\). For each edge \(e = (v, w)\), we put \(-1\) in \(N\) at position \(n_{v,e}\) and 1 at position \(n_{w,e}\).

Let \(f: V \to \mathbb{R}\) be a column vector. Then \(\|f^T N\|_2^2 = \sum_{(i,j) \in E(G)} |f(i) - f(j)|^2\). Define \(B_f := \sum_{(i,j) \in E(G)} |f(i) - f(j)|^2\). We prove that

\[
\|f\|_2^2 h(G) \leq B_f \leq \sqrt{2d} \|f^T N\|_2 \cdot \|f\|_2
\]

holds when the support of \(f\) has size at most \(\frac{n}{2}\) and is nonnegative. Then by choosing \(f\) appropriately, this proves the second inequality.

We prove \(\|f\|_2^2 h(G) \leq B_f\). Let \(\beta_0, \ldots, \beta_r\) be an enumeration of the image of \(f\) where \(\beta_0 < \cdots < \beta_r\). Note that \(\beta_0 = 0\), since the support of \(f\) is not the whole \(V\). Let \(V_i\) be the set of \(x \in V(G)\) such that \(f(x) \geq \beta_i\). We have \(V(G) = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_r\).

Claim. \(B_f\) is equal to \(\sum_{i=1}^r \|E(V_i, \overline{V_i})\| \times (\beta_i^2 - \beta_{i-1}^2)\).

Proof. Quite clear. \(\Box\)

Now, \(\sum_{i=1}^r \|E(V_i, \overline{V_i})\| \times (\beta_i^2 - \beta_{i-1}^2) \geq h(G) \sum_{i=1}^r |V_i| \times (\beta_i^2 - \beta_{i-1}^2),\) where we use the fact that \(|V_i| \leq \frac{|V(G)|}{r}\). We can rewrite this as \(h(G) \sum_{i=1}^r \beta_i^2 (|V_i| - |V_{i+1}|),\) if we define \(V_{r+1} := \emptyset\). Finally, we note that this is simply equal to \(h(G)\) \(\|f\|_2\).

On to prove \(B_f \leq \sqrt{2d} \|f^T N\|_2 \cdot \|f\|_2\). But this is just stupid computations:

\[
B_f = \sum_{(x,y) \in E} |f(x) - f(y)| \cdot |f(x) + f(y)|
\]

\[
\leq \sqrt{\sum (f(x) - f(y))^2 \cdot \sum (f(x) + f(y))^2}
\]

\[
\leq \|f^T N\|_2 \cdot \sqrt{2} \sum f(x)^2 + f(y)^2
\]

\[
\leq \|f^T N\|_2 \cdot \sqrt{2d} \|f\|_2.
\]
What we just proved is that
\[h(G) \leq \sqrt{2d} \frac{\|f^T N\|}{\|f\|} \]
holds for every nonnegative function \(f : V \to \mathbb{R} \) with support of size at most \(|V|/2\). Let \(g \) be an eigenvector associated with the eigenvalue \(\lambda_2 \). Define \(f := g^+ \), i.e., the vector that is like \(g \) when it is nonnegative and is 0 otherwise. If the support of \(f \) is too big, just pick \(g' := -g \) and do the same. Define another matrix \(L := N \times N^T \) of size \(|V(G)|^2\). The matrix \(L \) has \(d \)'s on the diagonal and at position \(i,j \) is \(-1\times\)number of edges connecting \(i \) and \(j = -dm_{i,j} \). Therefore, \(L = dI - dM \).

Let \(x \) be in the support of \(f \). We compute
\[
(Lf)(x) = d \cdot f(x) - \sum_{y \in V(G)} d \cdot M_{x,y} f(y)
= d \cdot g(x) - \sum_{y \in supp(f)} dM_{x,y} g(y)
\leq (Lg)(x)
= (dg - d\lambda_2 g)(x)
= d(1 - \lambda_2)g(x).
\]

This is amazing, because it gives \(\|f^T N\|^2 = f^T N N^T f = f^T L f = (f^T L|_{supp(f)}) \cdot f = \|f^T L|_{supp(f)}\| \cdot \|f\| \leq d(1 - \lambda_2)\|f\|^2 \). So, in the inequality at the top of the page, we obtain \(h(G) \leq \ldots \).

Part 2: let us now prove the first inequality. By rearranging, we want to prove \(d\lambda_2 \geq d - 2h(G) \). First, it suffices to prove that there exists \(f : V \to \mathbb{R} \) that is orthogonal to \(\left(\begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right) := 1_V \) and such that we have \(d\frac{f^T M f}{\|f\|^2} \geq d - 2h(G) \).

Indeed, suppose that we have such an \(f \) where the value of the fraction is \(\alpha \). Let \(A \) be orthogonal and such that \(A^T M A \) is diagonal. Let \(g := A^T f \). The first observation is that the first component of \(g \) is 0 (trivial). Then just compute.

Let \(S \) be a set witnessing the edge-expansion ratio. Define \(f := |S|1_S - |S|1_S \). It is indeed orthogonal to \(1_V \) and then it is simple computation. The denominator of the fraction is \(\|f\| = |S|^3 \cdot |S| + |S|^2 \cdot |S| = (|S| + |S|) \times |S| = |n|S||\bar{S}| \). Note that \(f \) can be written as \(n1_S - |S|1_V \) and also as \(-n1_S + |S|1_V \). The numerator of the fraction is then
\[
f^T dM f = (n1_S - |S|1_V)^T M (-n1_S + |S|1_V)
= -n^21_S^T dM 1_S + n|S|1_S^T dM 1_V + n|S|1_V^T dM 1_S - |S||\bar{S}|1_S^T dM 1_V
= -n^2 |E(S, S)| + nd|\bar{S}| |S| + nd|S| |\bar{S}| - |S||\bar{S}|n \cdot d
= nd|S||\bar{S}| - n^2 h(G)|S|.
\]
The fraction is then
\[\frac{dT\| f \|_2}{\| f \|_2} = \frac{nd\|S\| \|S\| - n^2|E(S, S)|}{n\|S\| \|S\|} \]
\[= d - \frac{nh(G)}{|S|} \]
\[\geq d - 2h(G). \]

This concludes the proof.

Let us now see a construction of an infinite family of expanders!

Definition 6. A graph \(G = (V, E) \) is an \((n, d, \alpha)\)-expander if it is \(d \)-regular, \(|V| = n\) and all the associated eigenvalues, except for 1 are bounded above in absolute value by \(\alpha \).

We define the zigzag product of two graphs. Let \(G \) be an orange graph that is \((n, m, \alpha)\) and \(H \) be a blue graph that is \((m, d, \beta)\). We build \(G \otimes H \) by first exploding every orange vertex by \(m \) vertices and then pasting arbitrarily a copy of \(H \) inside. The zigzag product is then the graph on this vertex set and where there is an edge \((x, y)\) if there is a blue edge from \(x \) to \(z \), an orange edge from \(z \) to \(w \), and a blue edge from \(w \) to \(y \).

Theorem 4. \((n, m, \alpha) \otimes (m, d, \beta) = (n \cdot m, d^2, f(\alpha, \beta))\), where \(f(\alpha, \beta) \leq \alpha + \beta + \beta^2 \). Moreover, if \(\alpha, \beta < 1 \), then \(f(\alpha, \beta) < 1 \).

Proof.

How to use this. Let \(H \) be a \((d^4, d^2, 1/2)\) expander. Let \(G_1 := H^2 \), where \(H^2 \) is the graph definable in \(H \) by \(E \circ E \). \(G_1 \) is a \((d^4, d^2, \leq 1/2)\) expander. Now define \(G_{n+1} := (G_n)^2 \otimes H \).

Claim: \(G_{n+1} \) is a \((d^{4n}, d^4, 1/2)\) expander. Indeed, \((G_n)^2 \) is \((d^{4n}, d^4, 1/4)\). Then by the property of the zigzag, we obtain a \((d^{4(n+1)}, d^4, 1/4 + 1/4 + 1/4 \leq 1/2)\) expander.

End of the proof, followed by a philosophical discussion about the degree of a vertex that has a loop.