Canonical Functions and Constraint Satisfaction

Antoine Mottet
Workshop {Symmetry, Logic, Computation}
Finding general conditions for tractability of infinite-domain CSPs, akin to the finite case
Finding general conditions for tractability of infinite-domain CSPs, akin to the finite case.

If possible find decidable conditions.
Finding general conditions for tractability of infinite-domain CSPs, akin to the finite case

If possible find decidable conditions.

Proving complete complexity classifications:
Finding general conditions for tractability of infinite-domain CSPs, akin to the finite case

If possible find decidable conditions.

Proving complete complexity classifications:

Theorem

Assume that the finite-domain tractability conjecture holds. If the relations of \mathbb{A} are definable in a unary language, then CSP(\mathbb{A}) is in P or NP-complete.
Outline

Computation: Constraint Satisfaction

Symmetry: Canonical Functions

Logic Computation
Computation: Constraint Satisfaction

Symmetry: Canonical Functions

Logic Computation
Relational structure: $\mathbb{A} = (A, R_1^A, \ldots, R_k^A)$ with $R_i^A \subseteq A^{r_i}$
Relational structure: $\mathbb{A} = (A, R_1^A, \ldots, R_k^A)$ with $R_i^A \subseteq A^{r_i}$

A homomorphism $f : \mathbb{A} \to \mathbb{B}$ is a function such that

$$\forall R_i, \forall (a_1, \ldots, a_{r_i}) \in R_i^A, \ (f(a_1), \ldots, f(a_{r_i})) \in R_i^B$$
Relational structure: $\mathbb{A} = (A, R_1^A, \ldots, R_k^A)$ with $R_i^A \subseteq A^{r_i}$

A homomorphism $f: \mathbb{A} \rightarrow \mathbb{B}$ is a function such that

$$\forall R_i, \forall (a_1, \ldots, a_{r_i}) \in R_i^A, (f(a_1), \ldots, f(a_{r_i})) \in R_i^B$$

Let \mathbb{A} be a relational structure, in a fixed finite signature τ.

Definition (CSP(\mathbb{A}))

Input: a finite τ-structure \mathbb{B}

Question: \exists homomorphism $h: \mathbb{B} \rightarrow \mathbb{A}$?
Example (CSP(K_3))

Input: a finite graph B

Question: Is B 3-colourable?
Example (CSP(K_3))

Input: a finite graph B

Question: Is B 3-colourable?
Example (CSP(K_3))

Input: a finite graph \mathbb{B}
Question: Is \mathbb{B} 3-colourable?
Complexity: NP-complete
Example (CSP(K_3))

Input: a finite graph \mathbb{B}

Question: Is \mathbb{B} 3-colourable?

Complexity: NP-complete

Example (CSP(\mathbb{Z}, $<$))

Input: a finite directed graph \mathbb{B}

Question:
Example (CSP(K_3))

Input: a finite graph B

Question: Is B 3-colourable?

Complexity: NP-complete

Example (CSP(\mathbb{Z}, $<$))

Input: a finite directed graph B

Question: Is B acyclic?
Example ($\text{CSP}(K_3)$)

Input: a finite graph B

Question: Is B 3-colourable?

Complexity: NP-complete

Example ($\text{CSP}(\mathbb{Z}, <)$)

Input: a finite directed graph B

Question: Is B acyclic?

Complexity: linear time
Example (CSP(\(\mathbb{Z}, +, \times\)))

Input: a hypergraph with vertices \(V\) and hyperedges \(E_+(x, y, z)\) and \(E_\times(x, y, z)\)

Question:

∃ assignment \(s: V \rightarrow \mathbb{Z}\) such that

\[
\begin{align*}
\{ s(x) + s(y) &= s(z) \} &\in E_+ \\
\{ s(x) \times s(y) &= s(z) \} &\in E_\times
\end{align*}
\]

Complexity: undecidable.

Theorem (Matiyasevich-Davis-Robinson-Putnam)

Every recursively enumerable set \(S \subseteq \mathbb{Z}\) is the projection on one variable of the set of solutions of some instance of CSP(\(\mathbb{Z}, +, \times\)).
Example (CSP($\mathbb{Z}, +, \times$))

Input: a hypergraph with vertices V and hyperedges $E_+(x, y, z)$ and $E_\times(x, y, z)$

Question: \exists assignment $s: V \rightarrow \mathbb{Z}$ such that

\[
\begin{cases}
 s(x) + s(y) = s(z) & (x, y, z) \in E_+ \\
 s(x) \times s(y) = s(z) & (x, y, z) \in E_\times
\end{cases}
\]
Example (CSP(\(\mathbb{Z}, +, \times\)))

Input: a hypergraph with vertices \(V\) and hyperedges \(E_+(x, y, z)\) and \(E_\times(x, y, z)\)

Question: \(\exists\) assignment \(s: V \rightarrow \mathbb{Z}\) such that

\[
\begin{align*}
 \begin{cases}
 s(x) + s(y) = s(z) & (x, y, z) \in E_+ \\
 s(x) \times s(y) = s(z) & (x, y, z) \in E_\times
 \end{cases}
\]

Complexity: undecidable.

Theorem (Matiyasevich-Davis-Robinson-Putnam)

Every recursively enumerable set \(S \subseteq \mathbb{Z}\) is the projection on one variable of the set of solutions of some instance of CSP(\(\mathbb{Z}, +, \times\)).
Conjecture (Feder-Vardi, ’93)

Let \mathbb{A} be a structure with a finite domain. Then $\text{CSP}(\mathbb{A})$ is in P or NP-complete.
Conjecture (Feder-Vardi, ’93)

Let \mathbb{A} be a structure with a finite domain. Then $\text{CSP}(\mathbb{A})$ is in P or NP-complete.

- Confirmed in many cases (graphs, smooth digraphs, small\(^\dagger \) structures, conservative structures, \ldots)
Conjecture (Feder-Vardi, ’93)

Let \mathbb{A} be a structure with a finite domain. Then $\text{CSP}(\mathbb{A})$ is in P or NP-complete.

▶ Confirmed in many cases (graphs, smooth digraphs, small† structures, conservative structures, . . .)
▶ Tractability conjecture: if \mathbb{A} has a cyclic polymorphism then $\text{CSP}(\mathbb{A})$ is in P.
Conjecture (Feder-Vardi, ’93)

Let \mathbb{A} be a structure with a finite domain. Then $\text{CSP}(\mathbb{A})$ is in P or NP-complete.

- Confirmed in many cases (graphs, smooth digraphs, small† structures, conservative structures, . . .)
- Tractability conjecture: if \mathbb{A} has a cyclic polymorphism then $\text{CSP}(\mathbb{A})$ is in P.

Transition to infinite domains:

- Find a reasonable class \mathcal{A} of infinite structures,
- Classify the complexity of $\text{CSP}(\mathbb{A})$ for all $\mathbb{A} \in \mathcal{A}$, assuming the tractability conjecture.
Definition

\(\mathcal{B} \) is \textit{finitely bounded} if there exists a finite family \(\mathcal{F} \) of finite structures such that for all finite \(\mathcal{C} \),

\[
\mathcal{C} \text{ substructure of } \mathcal{B} \iff \forall F \in \mathcal{F}, F \text{ not a substructure of } \mathcal{C}
\]

So the question “\(\mathcal{C} \) substructure of \(\mathcal{B} \)” is decidable.

Example ▶ (\(\mathbb{Q}, < \)): \(\mathcal{F} = \) all 3-element structures that are not linear orders

Example ▶ Universal triangle-free graph: \(\mathcal{F} = \{ \} \).
Definition

\(\mathcal{B} \) is finitely bounded if there exists a finite family \(\mathcal{F} \) of finite structures such that for all finite \(\mathcal{C} \),

\[
\mathcal{C} \text{ substructure of } \mathcal{B} \iff \forall F \in \mathcal{F}, F \text{ not a substructure of } \mathcal{C}
\]

So the question “\(\mathcal{C} \text{ substructure of } \mathcal{B} \)” is decidable.
Definition

\(\mathbb{B} \) is \textbf{finitely bounded} if there exists a finite family \(\mathcal{F} \) of finite structures such that for all finite \(\mathbb{C} \),

\[
\text{\(\mathbb{C} \) substructure of \(\mathbb{B} \) } \iff \forall F \in \mathcal{F}, F \text{ not a substructure of } \mathbb{C}
\]

So the question “\(\mathbb{C} \) substructure of \(\mathbb{B} \)?” is decidable.

Example

\((\mathbb{Q}, <) \): \(\mathcal{F} = \) all 3-element structures that are not linear orders
Definition

\mathbb{B} is **finitely bounded** if there exists a finite family \mathcal{F} of finite structures such that for all finite \mathbb{C},

$$\mathbb{C} \text{ substructure of } \mathbb{B} \iff \forall F \in \mathcal{F}, F \text{ not a substructure of } \mathbb{C}$$

So the question “\mathbb{C} substructure of \mathbb{B}?” is decidable.

Example

- $(\mathbb{Q}, <)$: $\mathcal{F} = \text{ all 3-element structures that are not linear orders}$
- Universal triangle-free graph: $\mathcal{F} = \{ \bullet \triangle \bullet \}$.
Definition

\(\mathcal{B} \) is finitely bounded if there exists a finite family \(\mathcal{F} \) of finite structures such that for all finite \(\mathcal{C} \),

\[
\mathcal{C} \text{ substructure of } \mathcal{B} \iff \forall F \in \mathcal{F}, F \text{ not a substructure of } \mathcal{C}
\]

So the question “\(\mathcal{C} \) substructure of \(\mathcal{B} \)?” is decidable.

Example

- \((\mathbb{Q}, <)\): \(\mathcal{F} = \) all 3-element structures that are not linear orders
- Universal triangle-free graph: \(\mathcal{F} = \{\begin{array}{c}
\bullet \\
\rightarrow \\
\bullet
\end{array}\}. \)

Definition

\(\mathcal{B} \) is homogeneous if every partial isomorphism with finite domain can be extended to an automorphism.
Definition

A is a reduct of B if the relations of A have a fo-definition in B.
Definition

A is a reduct of B if the relations of A have a fo-definition in B.

Conjecture (Bodirsky-Pinsker)

Let A be a reduct of a finitely bounded homogeneous structure. Then CSP(A) is in P or NP-complete.
Definition

A is a reduct of B if the relations of A have a fo-definition in B.

Conjecture (Bodirsky-Pinsker)

Let A be a reduct of a finitely bounded homogeneous structure. Then CSP(A) is in P or NP-complete.

Why “reduct of finitely bounded homogeneous structure”:

- ω-categorical structures
- CSP is guaranteed to be in NP
- false if we drop “finitely bounded”
Definition

A is a **reduct** of B if the relations of A have a fo-definition in B.

Conjecture (Bodirsky-Pinsker)

Let A be a reduct of a finitely bounded homogeneous structure. Then CSP(A) is in P or NP-complete.

Why “reduct of finitely bounded homogeneous structure”:

- ω-categorical structures
- CSP is guaranteed to be in NP
- false if we drop “finitely bounded”

Question: How to prove it?
Definition

\(A \) is a reduct of \(B \) if the relations of \(A \) have a fo-definition in \(B \).

Conjecture (Bodirsky-Pinsker)

Let \(A \) be a reduct of a finitely bounded homogeneous structure. Then \(CSP(A) \) is in \(P \) or NP-complete.

Why “reduct of finitely bounded homogeneous structure”:

- \(\omega \)-categorical structures
- CSP is guaranteed to be in NP
- false if we drop “finitely bounded”

Question: How to prove it, assuming the finite-domain conjecture?
BP conjecture is confirmed for:

- Reducts of \((\mathbb{N},=)\) (Bodirsky, Kára, ’06)
- Reducts of the Rado graph (Bodirsky, Pinsker, JACM’15)
- Reducts of a homogeneous graph (Bodirsky, Martin, Pinsker, Pongrácz, ICALP’16)
- Reducts of \((\mathbb{Q},<)\) (Bodirsky, Kára, JACM’08)
- ...
BP conjecture is confirmed for:

- Reducts of \((\mathbb{N}, \equiv)\) (Bodirsky, Kára, ’06)
- Reducts of the Rado graph (Bodirsky, Pinsker, JACM’15)
- Reducts of a homogeneous graph (Bodirsky, Martin, Pinsker, Pongrácz, ICALP’16)
- Reducts of \((\mathbb{Q}, <)\) (Bodirsky, Kára, JACM’08)
- ...

In the first 3 cases, the classification is of the form:

Theorem (xxx)

\(\mathbb{A}\) has a *canonical polymorphism* and CSP(\(\mathbb{A}\)) is in P, or CSP(\(\mathbb{A}\)) is NP-complete.
BP conjecture is confirmed for:

- Reducts of \((\mathbb{N}, =)\) (Bodirsky, Kára, ’06)
- Reducts of the Rado graph (Bodirsky, Pinsker, JACM’15)
- Reducts of a homogeneous graph (Bodirsky, Martin, Pinsker, Pongrácz, ICALP’16)
- Reducts of \((\mathbb{Q}, <)\) (Bodirsky, Kára, JACM’08)
- ...

In the first 3 cases, the classification is of the form:

Theorem (xxx)

\(\mathbb{A}\) has a *canonical* polymorphism and CSP(\(\mathbb{A}\)) is in \(P\), or CSP(\(\mathbb{A}\)) is NP-complete.

Not true for \((\mathbb{Q}, <)\).
Computation: Constraint Satisfaction

Symmetry: Canonical Functions

Logic Computation
G ≤ Sym(X), orbit of a ∈ X^m is \{(α · a_1, ..., α · a_m) : α ∈ G\}
\[G \leq \text{Sym}(X), \text{ orbit of } a \in X^m \text{ is } \{(\alpha \cdot a_1, \ldots, \alpha \cdot a_m) : \alpha \in G\} \]

\[G \text{ is oligomorphic} \text{ if for all } m \geq 1, \text{ there are finitely many orbits of } m\text{-tuples of } X \text{ under } G. \]
Oligomorphic groups, clones

- \(G \leq \text{Sym}(X) \), orbit of \(a \in X^m \) is \(\{(\alpha \cdot a_1, \ldots, \alpha \cdot a_m) : \alpha \in G\} \)

- \(G \) is oligomorphic if for all \(m \geq 1 \), there are finitely many orbits of \(m \)-tuples of \(X \) under \(G \).

- A function clone \(\mathcal{C} \) is a subset of \(\bigcup_{n \geq 1} X^{X^n} \) closed under composition and containing projections.
G ≤ Sym(X), orbit of \(a \in X^m \) is \(\{ (\alpha \cdot a_1, \ldots, \alpha \cdot a_m) : \alpha \in G \} \)

G is oligomorphic if for all \(m \geq 1 \), there are finitely many orbits of \(m \)-tuples of \(X \) under \(G \).

A function clone \(\mathcal{C} \) is a subset of \(\bigcup_{n \geq 1} X^{X^n} \) closed under composition and containing projections.

Natural topology: \((f_i) \rightarrow f \) iff for arbitrarily large finite sets \(X' \subset X \), there is \(i_0 \) such that \(f_j|_{X'} = f|_{X'} \) for \(j \geq i_0 \).
- $G \leq \text{Sym}(X)$, orbit of $a \in X^m$ is $\{(\alpha \cdot a_1, \ldots, \alpha \cdot a_m) : \alpha \in G\}$
- G is oligomorphic if for all $m \geq 1$, there are finitely many orbits of m-tuples of X under G.
- A function clone \mathcal{C} is a subset of $\bigcup_{n \geq 1} X^X$ closed under composition and containing projections.
- Natural topology: $(f_i) \rightarrow f$ iff for arbitrarily large finite sets $X' \subset X$, there is i_0 such that $f_j|_{X'} = f|_{X'}$ for $j \geq i_0$.
- $\phi : \mathcal{C} \rightarrow \mathcal{P}$ is continuous iff for every $g \in \mathcal{C}$, there is a finite set $X' \subset X$ such that $g|_{X'} = h|_{X'} \Rightarrow \phi(g) = \phi(h)$.
Fix:

- $G \leq \text{Sym}(X)$,
- $f : X^n \to X$
Fix:
- $G \leq \text{Sym}(X)$,
- $f : X^n \to X$

Definition

f is G-canonical if

$$\forall \alpha_1, \ldots, \alpha_n \in G, f \circ (\alpha_1, \ldots, \alpha_n) \in \overline{G \cdot f}$$
Fix:

- $G \leq \text{Sym}(X)$,
- $f : X^n \to X$

Definition

f is G-canonical if

$$\forall \alpha_1, \ldots, \alpha_n \in G, f \circ (\alpha_1, \ldots, \alpha_n) \in G \cdot f$$

Equivalently: f induces an action on G-orbits of m-tuples, for all $m \geq 1$.
Fix:
- \(G \leq \text{Sym}(X) \),
- \(f : X^n \to X \)

Definition

\(f \) is \(G \)-canonical if

\[
\forall \alpha_1, \ldots, \alpha_n \in G, f \circ (\alpha_1, \ldots, \alpha_n) \in \overline{G \cdot f}
\]

Equivalently: \(f \) induces an action on \(G \)-orbits of \(m \)-tuples, for all \(m \geq 1 \). If \(G \) is oligomorphic then \(f \) acts naturally on finite sets.

Theorem (Bodirsky-Pinsker-Tsankov)

Suppose \(G \) is nice. For all \(f : X^n \to X \), there exists \(g \in \overline{G \cdot f} \) which is \(G \)-canonical.
Fix:
- $G \leq \text{Sym}(X)$,
- $f : X^n \rightarrow X$

Definition

f is G-canonical if

$$\forall \alpha_1, \ldots, \alpha_n \in G, f \circ (\alpha_1, \ldots, \alpha_n) \in G \cdot f$$

Equivalently: f induces an action on G-orbits of m-tuples, for all $m \geq 1$. If G is oligomorphic then f acts naturally on finite sets.

Theorem (Bodirsky-Pinsker-Tsankov)

Suppose G is nice. For all $f : X^n \rightarrow X$, there exists $g \in GfG$ which is G-canonical.

Remark: G-canonical functions form a clone.
Symmetry

Example: \((\mathbb{Q}, <)\)

- unary functions: canonical \(\iff\) monotone
Symmetry

Example: \((\mathbb{Q}, \prec)\)

- **unary functions:** canonical \(\Leftrightarrow\) monotone

<table>
<thead>
<tr>
<th>orbit (\mathcal{O})</th>
<th>(f(\mathcal{O}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<)</td>
<td></td>
</tr>
<tr>
<td>(>)</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>orbit (\mathcal{O})</th>
<th>(f(\mathcal{O}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<)</td>
<td></td>
</tr>
<tr>
<td>(>)</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>orbit (\mathcal{O})</th>
<th>(f(\mathcal{O}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<)</td>
<td></td>
</tr>
<tr>
<td>(>)</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry

Example: \((\mathbb{Q}, <)\)

 Unary functions: canonical ⇔ monotone

<table>
<thead>
<tr>
<th>orbit (O)</th>
<th>(f(O))</th>
<th>orbit (O)</th>
<th>(f(O))</th>
<th>orbit (O)</th>
<th>(f(O))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<)</td>
<td>(<)</td>
<td>(<)</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(>)</td>
<td>(>)</td>
<td>(>)</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(=)</td>
<td>(=)</td>
<td>(=)</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

Example of binary function: the lexicographic order

Non-example: the maximum function
Example: $(\mathbb{Q}, <)$

- **Unary functions**: canonical \leftrightarrow monotone

<table>
<thead>
<tr>
<th>orbit \mathcal{O}</th>
<th>$f(\mathcal{O})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<$</td>
<td>$<$</td>
</tr>
<tr>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$=$</td>
<td>$=$</td>
</tr>
</tbody>
</table>

- **Example of binary function**: the lexicographic order

- **Non-example**: the maximum function
Example: \((\mathbb{Q}, <)\)

- **unary functions: canonical \(\leftrightarrow\) monotone**

<table>
<thead>
<tr>
<th>orbit (\mathcal{O})</th>
<th>(f(\mathcal{O}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<)</td>
<td>(<)</td>
</tr>
<tr>
<td>(>)</td>
<td>(>)</td>
</tr>
<tr>
<td>(=)</td>
<td>(=)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>orbit (\mathcal{O})</th>
<th>(f(\mathcal{O}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<)</td>
<td>(>)</td>
</tr>
<tr>
<td>(>)</td>
<td>(<)</td>
</tr>
<tr>
<td>(=)</td>
<td>(=)</td>
</tr>
</tbody>
</table>

- **example of binary function: the lexicographic order**

- **non-example: the maximum function**
Example: \((\mathbb{Q}, <)\)

- **Unary functions:** canonical \(\leftrightarrow\) monotone

<table>
<thead>
<tr>
<th>Orbit (O)</th>
<th>(f(O))</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td><</td>
</tr>
<tr>
<td>></td>
<td>></td>
</tr>
<tr>
<td>=</td>
<td>=</td>
</tr>
</tbody>
</table>

- **Example of binary function:** the lexicographic order

<table>
<thead>
<tr>
<th></th>
<th>=</th>
<th><</th>
<th>></th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>=</td>
<td><</td>
<td>></td>
</tr>
<tr>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
</tr>
</tbody>
</table>
Example: \((\mathbb{Q}, <)\)

- **Unary functions:** canonical \(\iff\) monotone

<table>
<thead>
<tr>
<th>Orbit (\mathcal{O})</th>
<th>(f(\mathcal{O}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<)</td>
<td>(<)</td>
</tr>
<tr>
<td>(>)</td>
<td>(>)</td>
</tr>
<tr>
<td>(=)</td>
<td>(=)</td>
</tr>
</tbody>
</table>

- **Example of binary function:** the lexicographic order

<table>
<thead>
<tr>
<th></th>
<th>=</th>
<th><</th>
<th>></th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>=</td>
<td><</td>
<td>></td>
</tr>
<tr>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>></td>
<td>></td>
<td>></td>
<td>></td>
</tr>
</tbody>
</table>

- **Non-example:** the maximum function
Definition (Mash-up)

G-canonical functions g, h, O, O' G-orbits of m-tuples. ω is a mash-up of g, h if it is G-canonical and

$$\omega(O, O') = g(O, O')$$
$$\omega(O', O) = h(O', O).$$
Definition (Mash-up)

G-canonical functions g, h, O, O' G-orbits of m-tuples.

ω is a mash-up of g, h if it is G-canonical and

\[
\omega(O, O') = g(O, O') \\
\omega(O', O) = h(O', O).
\]

\[
\begin{array}{|c|c|c|}
\hline
\omega & \ldots & O & O' \\
\hline
\vdots & & \vdots & \vdots \\
O & & O & \vdots \\
O' & & O' & \vdots \\
\vdots & & \vdots & \vdots \\
\hline
\end{array}
\]
Definition (Mash-up)

G-canonical functions g, h, O, O' G-orbits of m-tuples.
ω is a mash-up of g, h if it is G-canonical and

\[
\begin{align*}
\omega(O, O') &= g(O, O') \\
\omega(O', O) &= h(O', O).
\end{align*}
\]

\[
\begin{array}{|c|c|c|}
\hline
\omega & \ldots & O & O' \\
\hline
\vdots & & \ldots & \vdots \\
O & & g(O, O') \\
O' & & h(O', O) \\
\vdots & & \vdots & \\
\hline
\end{array}
\]
Definition

\mathcal{C}, \mathcal{D} clones. $\phi: \mathcal{C} \rightarrow \mathcal{D}$ is a clone homomorphism if $\phi(pr^n_i) = pr^n_i$ and $\phi(f \circ (g_1, \ldots, g_n)) = \phi(f) \circ (\phi(g_1), \ldots, \phi(g_n))$.

Clone homomorphisms preserve equations:

$\forall x, y, f(x, f(y, z)) = f(f(x, y), z) \Rightarrow \forall x, y, \phi(f)(x, \phi(f)(y, z)) = \phi(f)(\phi(f)(x, y), z)$.

Definition

\mathcal{C}, \mathcal{D} clones. $\phi: \mathcal{C} \rightarrow \mathcal{D}$ is a clone homomorphism if $\phi(pr^n_i) = pr^n_i$ and $\phi(f \circ (g_1, \ldots, g_n)) = \phi(f) \circ (\phi(g_1), \ldots, \phi(g_n))$.

Clone homomorphisms preserve equations:

$$\forall x, y, f(x, f(y, z)) = f(f(x, y), z)$$
Definition

Let \mathcal{C}, \mathcal{D} be clones. $\phi: \mathcal{C} \to \mathcal{D}$ is a clone homomorphism if $\phi(pr^n_i) = pr^n_i$ and $\phi(f \circ (g_1, \ldots, g_n)) = \phi(f) \circ (\phi(g_1), \ldots, \phi(g_n))$.

Clone homomorphisms preserve equations:

$$\forall x, y, f(x, f(y, z)) = f(f(x, y), z)$$
$$\Rightarrow \forall x, y, \phi(f)(x, \phi(f)(y, z)) = \phi(f)(\phi(f)(x, y), z)$$
Definition

\(\mathcal{C}, \mathcal{D} \) clones. \(\phi: \mathcal{C} \rightarrow \mathcal{D} \) is a clone homomorphism if \(\phi(pr_i^n) = pr_i^n \) and \(\phi(f \circ (g_1, \ldots, g_n)) = \phi(f) \circ (\phi(g_1), \ldots, \phi(g_n)) \).

Clone homomorphisms preserve equations:

\[
\forall x, y, \ f(x, f(y, z)) = f(f(x, y), z) \\
\Rightarrow \forall x, y, \ \phi(f)(x, \phi(f)(y, z)) = \phi(f)(\phi(f)(x, y), z)
\]

Definition (Barto, Opršal, Pinsker)

\(\mathcal{C}, \mathcal{D} \) clones. \(\phi: \mathcal{C} \rightarrow \mathcal{D} \) is an \(h1 \) homomorphism if

\[
\phi(f \circ (pr_{j_1}^n, \ldots, pr_{j_k}^n)) = \phi(f) \circ (pr_{j_1}^n, \ldots, pr_{j_k}^n).
\]
Definition

\(\mathcal{C}, \mathcal{D} \) clones. \(\phi : \mathcal{C} \to \mathcal{D} \) is a clone homomorphism if \(\phi(pr^n_i) = pr^n_i \) and \(\phi(f \circ (g_1, \ldots, g_n)) = \phi(f) \circ (\phi(g_1), \ldots, \phi(g_n)) \).

Clone homomorphisms preserve equations:

\[
\forall x, y, f(x, f(y, z)) = f(f(x, y), z) \\
\Rightarrow \forall x, y, \phi(f)(x, \phi(f)(y, z)) = \phi(f)(\phi(f)(x, y), z)
\]

Definition (Barto, Opršal, Pinsker)

\(\mathcal{C}, \mathcal{D} \) clones. \(\phi : \mathcal{C} \to \mathcal{D} \) is an h1 homomorphism if

\[
\phi(f \circ (pr^n_{j_1}, \ldots, pr^n_{j_k})) = \phi(f) \circ (pr^n_{j_1}, \ldots, pr^n_{j_k}).
\]

h1 homomorphisms preserve equations of height 1.
Theorem

\(\mathcal{C} \) an oligomorphic closed core clone with *mash-ups*. TFAE:

1. there is a continuous \(h_1 \) homomorphism \(\mathcal{C} \to \mathcal{P} \) that preserves left-composition with unary operations;

Any of these properties is decidable!
Theorem

\(\mathcal{C} \) an oligomorphic closed core clone with mash-ups. TFAE:

1. there is a continuous \(h_1 \) homomorphism \(\mathcal{C} \to \mathcal{P} \) that preserves left-composition with unary operations;
2. there is a \(h_1 \) homomorphism \(\mathcal{C} \to \mathcal{P} \) that preserves left-composition with unary operations;
Theorem

\mathcal{C} an oligomorphic closed core clone with mash-ups. TFAE:

1. there is a continuous h_1 homomorphism $\mathcal{C} \to \mathcal{P}$ that preserves left-composition with unary operations;

2. there is a h_1 homomorphism $\mathcal{C} \to \mathcal{P}$ that preserves left-composition with unary operations;

3. there is a continuous clone homomorphism $\mathcal{C}^{\text{can}} \to \mathcal{P}$.

Any of these properties is decidable!
Theorem

\(\mathcal{C} \) an oligomorphic closed core clone with \textit{mash-ups}. TFAE:

1. there is a continuous \(h_1 \) homomorphism \(\mathcal{C} \to \mathcal{P} \) that preserves left-composition with unary operations;
2. there is a \(h_1 \) homomorphism \(\mathcal{C} \to \mathcal{P} \) that preserves left-composition with unary operations;
3. there is a continuous clone homomorphism \(\mathcal{C}^{\text{can}} \to \mathcal{P} \);
4. there is no pseudo-cyclic operation in \(\mathcal{C} \);

Any of these properties is decidable!
Theorem

\(\mathcal{C} \) an oligomorphic closed core clone with mash-ups. TFAE:

1. there is a continuous \(h^1 \) homomorphism \(\mathcal{C} \to \mathcal{P} \) that preserves left-composition with unary operations;
2. there is a \(h^1 \) homomorphism \(\mathcal{C} \to \mathcal{P} \) that preserves left-composition with unary operations;
3. there is a continuous clone homomorphism \(\mathcal{C}^{\text{can}} \to \mathcal{P} \);
4. there is no pseudo-cyclic operation in \(\mathcal{C} \);
5. there is no pseudo-cyclic operation in \(\mathcal{C}^{\text{can}} \).
Theorem

\(\mathcal{C} \) an oligomorphic closed core clone with mash-ups. TFAE:

1. there is a continuous \(h_1 \) homomorphism \(\mathcal{C} \rightarrow \mathcal{P} \) that preserves left-composition with unary operations;
2. there is a \(h_1 \) homomorphism \(\mathcal{C} \rightarrow \mathcal{P} \) that preserves left-composition with unary operations;
3. there is a continuous clone homomorphism \(\mathcal{C}^{\text{can}} \rightarrow \mathcal{P} \);
4. there is no pseudo-cyclic operation in \(\mathcal{C} \);
5. there is no pseudo-cyclic operation in \(\mathcal{C}^{\text{can}} \).

\(f \) pseudo-cyclic iff there are \(e_1, e_2 \) such that

\[
e_1 f(x_1, \ldots, x_n) = e_2 f(x_2, \ldots, x_n, x_1)
\]
Theorem

\(\mathcal{C} \) an oligomorphic closed core clone with *mash-ups*. TFAE:

1. there is a continuous \(h_1 \) homomorphism \(\mathcal{C} \to \mathcal{P} \) that preserves left-composition with unary operations;
2. there is a \(h_1 \) homomorphism \(\mathcal{C} \to \mathcal{P} \) that preserves left-composition with unary operations;
3. there is a continuous clone homomorphism \(\mathcal{C}^{\text{can}} \to \mathcal{P} \);
4. there is no pseudo-cyclic operation in \(\mathcal{C} \);
5. there is no pseudo-cyclic operation in \(\mathcal{C}^{\text{can}} \).

\(f \) pseudo-cyclic iff there are \(e_1, e_2 \) such that

\[
e_1 f(x_1, \ldots, x_n) = e_2 f(x_2, \ldots, x_n, x_1)
\]

Any of these properties is decidable!
Computation: Constraint Satisfaction

Symmetry: Canonical Functions

Logic Computation
Theorem (Bodirsky-M, LICS’16)

Assume the tractability conjecture, and let \mathbb{A} be a reduct of a finitely bounded homogeneous structure \mathbb{B}. If \mathbb{A} has a pseudo-cyclic polymorphism that is $\text{Aut}(\mathbb{B})$-canonical, then $\text{CSP}(\mathbb{A})$ is in P.

In fact, any tractability condition from finite-domain CSPs can be lifted to the BP class.

Theorem
Assume the tractability conjecture. If $\text{Pol}(\mathbb{A})$ has mash-ups, then:

- $\text{Pol}(\mathbb{A}) \rightarrow P$, and $\text{CSP}(\mathbb{A})$ is NP-complete,
- or $\text{Pol}(\mathbb{A})$ contains a canonical pseudo-cyclic operation, and $\text{CSP}(\mathbb{A})$ is in P.

Consequence: membership in P is decidable! if $P=NP$ or the tractability conjecture is true.
Theorem (Bodirsky-M, LICS’16)

Assume the tractability conjecture, and let \mathcal{A} be a reduct of a finitely bounded homogeneous structure \mathcal{B}. If \mathcal{A} has a pseudo-cyclic polymorphism that is $\text{Aut}(\mathcal{B})$-canonical, then $\text{CSP}(\mathcal{A})$ is in P.

In fact, any tractability condition from finite-domain CSPs can be lifted to the BP class.
Theorem (Bodirsky-M, LICS’16)

Assume the tractability conjecture, and let \mathbb{A} be a reduct of a finitely bounded homogeneous structure \mathbb{B}. If \mathbb{A} has a pseudo-cyclic polymorphism that is $\text{Aut}(\mathbb{B})$-canonical, then $\text{CSP}(\mathbb{A})$ is in P.

In fact, any tractability condition from finite-domain CSPs can be lifted to the BP class.

Theorem

Assume the tractability conjecture. If $\text{Pol}(\mathbb{A})$ has mash-ups, then:

- $\text{Pol}(\mathbb{A}) \rightarrow \mathcal{P}$, and $\text{CSP}(\mathbb{A})$ is NP-complete, or
- $\text{Pol}(\mathbb{A})$ contains a canonical pseudo-cyclic operation, and $\text{CSP}(\mathbb{A})$ is in P.
Theorem (Bodirsky-M, LICS’16)

Assume the tractability conjecture, and let \mathcal{A} be a reduct of a finitely bounded homogeneous structure \mathcal{B}. If \mathcal{A} has a pseudo-cyclic polymorphism that is Aut(\mathcal{B})-canonical, then CSP(\mathcal{A}) is in P.

In fact, any tractability condition from finite-domain CSPs can be lifted to the BP class.

Theorem

Assume the tractability conjecture. If Pol(\mathcal{A}) has mash-ups, then:

- Pol(\mathcal{A}) \rightarrow \mathcal{P}, and CSP(\mathcal{A}) is NP-complete, or
- Pol(\mathcal{A}) contains a canonical pseudo-cyclic operation, and CSP(\mathcal{A}) is in P.

Consequence: membership in P is decidable!

if P=NP or the tractability conjecture is true
Where are canonical functions enough?

- MMSNP
- Reducts of fin. bounded. homogeneous
- Definable structures over \((\mathbb{N}, =)\)
- Reducts \((\mathbb{Q}, <)\)
- Reducts unary structures
- Reducts \((\mathbb{N}, 0, 1, \ldots)\)
- Finite-domain CSPs
- Reducts of \((\mathbb{N}, =)\)
- Reducts homog. graphs + constants
- Reducts of homogeneous graphs
- Fix relational signature τ
- MMSNP τ-sentences are of the form

$$\exists M_1 \cdots \exists M_k \forall x \bigwedge \neg (\bigwedge \cdots)$$

Example (No monochromatic triangle)

$$\exists \text{Red} \exists \text{Blue} \forall x, y, z (\neg (\cdots) \land \neg (\cdots))$$

Theorem (Feder-Vardi-Kun)

MMSNP has a P/NP-complete dichotomy iff finite-domain CSPs have a dichotomy.

Theorem

If all obstructions are monochromatic, then tractability is witnessed by canonical functions.
Fix relational signature τ

MMSNP τ-sentences are of the form

$$\exists M_1 \ldots \exists M_k \forall x \bigwedge \neg (\bigwedge \ldots)$$

Example (No monochromatic triangle)

$$\exists Red \exists Blue \forall x, y, z \left(\neg (\square) \land \neg (\triangle) \right)$$
Fix relational signature τ

MMSNP τ-sentences are of the form

$$\exists M_1 \cdots \exists M_k \forall x \bigwedge \neg (\bigwedge \ldots)$$

Example (No monochromatic triangle)

$$\exists Red \ \exists Blue \ \forall x, y, z \ (\neg (\triangle) \land \neg (\triangle))$$

Theorem (Feder-Vardi-Kun)

MMSNP has a P/NP-complete dichotomy iff finite-domain CSPs have a dichotomy.
Fix relational signature τ

MMSNP τ-sentences are of the form

$$\exists M_1 \cdots \exists M_k \forall x \bigwedge \neg(\bigwedge \cdots)$$

Example (No monochromatic triangle)

$$\exists Red \exists Blue \forall x, y, z (\neg(\bigtriangleup) \land \neg(\bigtriangleup))$$

Theorem (Feder-Vardi-Kun)

MMSNP has a P/NP-complete dichotomy iff finite-domain CSPs have a dichotomy.

Theorem

If all obstructions are monochromatic, then tractability is witnessed by canonical functions.