Constraint Satisfaction Problems over the Integers with Successor

Manuel Bodirsky, Barnaby Martin, Antoine Mottet
ICALP 2015
Let σ be a relational signature. A primitive positive σ-formula is a formula $\phi(x_1, \ldots, x_n)$ of the form

$$\exists x_{n+1}, \ldots, x_{n+r} \bigwedge_{i=1}^{m} R_i(x_{i1}, \ldots, x_{ik}),$$

where $R_i \in (\sigma \cup \{=\})$.

What is the complexity of deciding satisfiability of pp-formulas over \mathbb{Z}, depending on σ?

Examples:

- $\{<, +\}$: in P (consequence of LP tractability and scalability)
- $\{<, +, 1\}$: NP-complete (integer linear programming)
- $\{+, \times\}$: undecidable (Hilbert's Tenth Problem)
Let σ be a relational signature. A **primitive positive** σ-formula is a formula $\phi(x_1, \ldots, x_n)$ of the form

$$\exists x_{n+1}, \ldots, x_{n+r} \bigwedge_{i=1}^{m} R_i(x_{i_1}, \ldots, x_{i_k}), \quad R_i \in (\sigma \cup \{=\}).$$
Let σ be a relational signature. A primitive positive σ-formula is a formula $\phi(x_1, \ldots, x_n)$ of the form

$$\exists x_{n+1}, \ldots, x_{n+r} \bigwedge_{i=1}^{m} R_i(x_{i_1}, \ldots, x_{i_k}), \quad R_i \in (\sigma \cup \{=\}).$$

What is the complexity of deciding satisfiability of pp-formulas over \mathbb{Z}, depending on σ?
Let σ be a relational signature. A **primitive positive** σ-formula is a formula $\phi(x_1, \ldots, x_n)$ of the form

$$\exists x_{n+1}, \ldots, x_{n+r} \bigwedge_{i=1}^{m} R_i(x_{i_1}, \ldots, x_{i_k}), \quad R_i \in (\sigma \cup \{=\}).$$

What is the complexity of deciding satisfiability of pp-formulas over \mathbb{Z}, depending on σ?

Examples:

- $\{<, +\}$: in P (consequence of LP tractability and scalability)
Let σ be a relational signature. A primitive positive σ-formula is a formula $\phi(x_1, \ldots, x_n)$ of the form

$$\exists x_{n+1}, \ldots, x_{n+r} \bigwedge_{i=1}^{m} R_i(x_{i_1}, \ldots, x_{i_k}), \quad R_i \in (\sigma \cup \{=\}).$$

What is the complexity of deciding satisfiability of pp-formulas over \mathbb{Z}, depending on σ?

Examples:

- $\{<, +\}$: in P (consequence of LP tractability and scalability)
- $\{<, +, 1\}$: NP-complete (integer linear programming)
Motivation
Satisfiability of arithmetic formulas

Let σ be a relational signature. A primitive positive σ-formula is a formula $\phi(x_1, \ldots, x_n)$ of the form

$$\exists x_{n+1}, \ldots, x_{n+r} \bigwedge_{i=1}^{m} R_i(x_{i_1}, \ldots, x_{i_k}), \quad R_i \in (\sigma \cup \{=\}).$$

What is the complexity of deciding satisfiability of pp-formulas over \mathbb{Z}, depending on σ?

Examples:

- $\{<, +\}$: in P (consequence of LP tractability and scalability)
- $\{<, +, 1\}$: NP-complete (integer linear programming)
- $\{+, \times\}$: undecidable (Hilbert’s Tenth Problem)
Definition (CSP(Γ))

Let Γ be a relational structure with a finite signature. The constraint satisfaction problem of Γ is the following decision problem:

Input: a primitive positive sentence φ in the language of Γ,

Question: is φ true in Γ?

The structure Γ is called the template of CSP(Γ).
The CSP of $\langle \mathbb{Z}; \text{succ} \rangle$:

$\exists x_1, \ldots, x_6 (x_2 = \text{succ}(x_1) \land x_4 = \text{succ}(x_2) \land \ldots) \supseteq = x_1 x_2 x_3 x_4 x_5 x_6$ satisfying assignment \supseteq homomorphism to $\langle \mathbb{Z}; \text{succ} \rangle$.
The CSP of \((\mathbb{Z}; \text{succ})\):

- We view the input formula as a directed graph \(G \).
The CSP of \((\mathbb{Z}; \text{succ})\):

- We view the input formula as a directed graph \(G\).
- The input is true in \((\mathbb{Z}, \text{succ})\) iff there is a graph homomorphism from \(G\) to \((\mathbb{Z}; \text{succ})\).
The CSP of \((\mathbb{Z}; \text{succ})\):

- We view the input formula as a directed graph \(G\).
- The input is true in \((\mathbb{Z}, \text{succ})\) iff there is a graph homomorphism from \(G\) to \((\mathbb{Z}; \text{succ})\).

\[
\exists x_1, \ldots, x_6 (x_2 = \text{succ}(x_1) \wedge x_4 = \text{succ}(x_2) \wedge \ldots) \equiv
\]

\[
\exists x_1, \ldots, x_6 (x_2 = \text{succ}(x_1) \wedge x_4 = \text{succ}(x_2) \wedge \ldots)
\]

\[
\cong
\]
Example

The CSP of $\langle \mathbb{Z}; \text{succ} \rangle$:

- We view the input formula as a directed graph G.
- The input is true in $\langle \mathbb{Z}, \text{succ} \rangle$ iff there is a graph homomorphism from G to $\langle \mathbb{Z}; \text{succ} \rangle$.

$$\exists x_1, \ldots, x_6 (x_2 = \text{succ}(x_1) \land x_4 = \text{succ}(x_2) \land \ldots) \equiv$$

- satisfying assignment \equiv homomorphism to $\langle \mathbb{Z}; \text{succ} \rangle$
The CSP of \((\mathbb{Z}; \text{succ})\):

- We view the input formula as a directed graph \(G\).
- The input is true in \((\mathbb{Z}, \text{succ})\) iff there is a graph homomorphism from \(G\) to \((\mathbb{Z}; \text{succ})\).
- Complexity:

\[
\exists x_1, \ldots, x_6 (x_2 = \text{succ}(x_1) \land x_4 = \text{succ}(x_2) \land \ldots) \equiv \text{satisfying assignment} \equiv \text{homomorphism to} \ (\mathbb{Z}; \text{succ})
\]
The CSP of \((\mathbb{Z}; \text{succ})\):

- We view the input formula as a directed graph \(G\).
- The input is true in \((\mathbb{Z}, \text{succ})\) iff there is a graph homomorphism from \(G\) to \((\mathbb{Z}; \text{succ})\).
- Complexity: in \(P\).

\[
\exists x_1, \ldots, x_6 \left(x_2 = \text{succ}(x_1) \land x_4 = \text{succ}(x_2) \land \ldots \right) \equiv \text{satisfying assignment} \equiv \text{homomorphism to } (\mathbb{Z}; \text{succ})
\]
Definition

Let Γ be a relational structure and $R \subseteq \Gamma^n$ be a relation.

Examples:

- The unary $R = \{ x \in \mathbb{Z} : x \text{ is even} \}$ is definable in $(\mathbb{Z}; +)$.
- $\{ (x, y) \in \mathbb{Z}^2 : x \text{ divides } y \}$ is definable in $(\mathbb{Z}; \times)$.
Definition

Let Γ be a relational structure and $R \subseteq \Gamma^n$ be a relation. We say that R is first-order definable in Γ if there exists a first-order formula $\phi(x_1, \ldots, x_n)$ in the language of Γ such that

$$(a_1, \ldots, a_n) \in R \iff \Gamma \models \phi(a_1, \ldots, a_n).$$
Definition

Let Γ be a relational structure and $R \subseteq \Gamma^n$ be a relation. We say that R is **first-order definable** in Γ if there exists a first-order formula $\phi(x_1, \ldots, x_n)$ in the language of Γ such that

$$(a_1, \ldots, a_n) \in R \iff \Gamma \models \phi(a_1, \ldots, a_n).$$

Examples:

- The unary $R = \{ x \in \mathbb{Z} : x \text{ is even} \}$ is definable in $(\mathbb{Z}; +)$.
Definition

Let Γ be a relational structure and $R \subseteq \Gamma^n$ be a relation. We say that R is first-order definable in Γ if there exists a first-order formula $\phi(x_1, \ldots, x_n)$ in the language of Γ such that

$$(a_1, \ldots, a_n) \in R \iff \Gamma \models \phi(a_1, \ldots, a_n).$$

Examples:

- The unary $R = \{ x \in \mathbb{Z} : x \text{ is even} \}$ is definable in $(\mathbb{Z}; +)$,
- $\{(x, y) \in \mathbb{Z}^2 : x \text{ divides } y \}$ is definable in $(\mathbb{Z}; \times)$.

New relations from old
Definable relations and reducts

Definition
Let Γ be a relational structure and $R \subseteq \Gamma^n$ be a relation. We say that R is first-order definable in Γ if there exists a first-order formula $\phi(x_1, \ldots, x_n)$ in the language of Γ such that

$$(a_1, \ldots, a_n) \in R \iff \Gamma \models \phi(a_1, \ldots, a_n).$$

Examples:
- The unary $R = \{x \in \mathbb{Z} : x \text{ is even}\}$ is definable in $(\mathbb{Z}; +)$,
- $\{(x, y) \in \mathbb{Z}^2 : x \text{ divides } y\}$ is definable in $(\mathbb{Z}; \times)$.

Definition
Let Γ, Δ be structures over the same domain. We say that Γ is a reduct of Δ when all the relations of Γ are (fo-)definable in Δ.
Definition

A distance CSP is a CSP whose template is a reduct of \((\mathbb{Z}; \text{succ})\).
A **distance CSP** is a CSP whose template is a reduct of \((\mathbb{Z}; \text{succ})\).

Examples:

- \(\text{CSP}(\mathbb{Z}; \text{succ})\): in \(P\),
Definition

A distance CSP is a CSP whose template is a reduct of \((\mathbb{Z}; \text{succ})\).

Examples:

- CSP\((\mathbb{Z}; \text{succ})\): in P,
- Let \(R\) be the ternary relation that contains
 \[(a + 1, a, a), (a, a + 1, a), (a + 1, a + 1, a)\]
 for all \(a \in \mathbb{Z}\).
A **distance CSP** is a CSP whose template is a reduct of \((\mathbb{Z}; \text{succ})\).

Examples:

- \(\text{CSP}(\mathbb{Z}; \text{succ})\): in P,
- Let \(R\) be the ternary relation that contains

 \[(a + 1, a, a), (a, a + 1, a), (a + 1, a + 1, a)\]

 for all \(a \in \mathbb{Z}\). \(\text{CSP}(\mathbb{Z}; R)\):
A distance CSP is a CSP whose template is a reduct of \((\mathbb{Z}; \text{succ})\).

Examples:

- CSP\((\mathbb{Z}; \text{succ})\): in P,
- Let \(R \) be the ternary relation that contains
 \[(a + 1, a, a), (a, a + 1, a), (a + 1, a + 1, a)\]
 for all \(a \in \mathbb{Z} \). CSP\((\mathbb{Z}; R)\): in P,
Distance Constraint Satisfaction Problems

Definition

A distance CSP is a CSP whose template is a reduct of \((\mathbb{Z}; \text{succ})\).

Examples:

- \(\text{CSP}\left(\mathbb{Z}; \text{succ}\right):\) in \(P\),
- Let \(R\) be the ternary relation that contains
 \[(a + 1, a, a), (a, a + 1, a), (a + 1, a + 1, a)\]
 for all \(a \in \mathbb{Z}\). \(\text{CSP}\left(\mathbb{Z}; R\right):\) in \(P\),
- \(\text{CSP}\left(\mathbb{Z}; |x - y| = 1, |x - y| = 5\right):\) \(NP\)-complete,
Definition

A **distance CSP** is a CSP whose template is a reduct of \((\mathbb{Z}; \text{succ})\).

Examples:

- **CSP(\mathbb{Z}; \text{succ}):** in P,
- Let \(R \) be the ternary relation that contains \((a + 1, a, a), (a, a + 1, a), (a + 1, a + 1, a)\) for all \(a \in \mathbb{Z} \). **CSP(\mathbb{Z}; R):** in P,
- **CSP(\mathbb{Z}; |x − y| = 1, |x − y| = 5):** NP-complete,
- **CSP(\mathbb{Z}; \neq, y − x \in \{1, 2\}):** NP-complete.
Definition

A **distance CSP** is a CSP whose template is a reduct of \((\mathbb{Z}; \text{succ})\).

Examples:

- **CSP(\mathbb{Z}; \text{succ}):** in P,
- Let R be the ternary relation that contains

 \[(a + 1, a, a), (a, a + 1, a), (a + 1, a + 1, a)\]

 for all \(a \in \mathbb{Z}\). **CSP(\mathbb{Z}; R):** in P,
- **CSP(\mathbb{Z}; |x − y| = 1, |x − y| = 5):** NP-complete,
- **CSP(\mathbb{Z}; \neq, y − x \in \{1, 2\}):** NP-complete.

Problem (Complexity classification project for \((\mathbb{Z}; \text{succ})\))

Give a complete classification of the complexity of distance CSPs.
Previous Work

A reduct Γ of $(\mathbb{Z}; \text{succ})$ is **locally finite** if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ.
A reduct Γ of $(\mathbb{Z}; \text{succ})$ is **locally finite** if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ.

▶ $(\mathbb{Z}; |y - x| \leq 3)$ is locally finite.
A reduct Γ of $(\mathbb{Z}; succ)$ is **locally finite** if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ.

- $(\mathbb{Z}; |y - x| \leq 3)$ is locally finite.

\[
\begin{array}{c}
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\end{array}
\]

\[
\begin{array}{c}
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\end{array}
\]
A reduct Γ of $(\mathbb{Z}; \text{succ})$ is **locally finite** if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ.

- $(\mathbb{Z}; |y - x| \leq 3)$ is locally finite.
- $(\mathbb{Z}; x = y \lor u = v, \text{succ})$ is not.
A reduct Γ of $(\mathbb{Z}; \text{succ})$ is locally finite if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ.

- $(\mathbb{Z}; |y - x| \leq 3)$ is locally finite.

- $(\mathbb{Z}; x = y \lor u = v, \text{succ})$ is not.

Theorem (Bodirsky, Dalmau, Martin, Pinsker '10)

Let Γ be a locally finite reduct of $(\mathbb{Z}; \text{succ})$. Then $\text{CSP}(\Gamma)$ is in P or NP-complete.
A reduct Γ of $\langle \mathbb{Z}; \text{succ} \rangle$ is **locally finite** if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ.

- $\langle \mathbb{Z}; |y - x| \leq 3 \rangle$ is locally finite.
- $\langle \mathbb{Z}; x = y \lor u = v, \text{succ} \rangle$ is not.

Theorem (Bodirsky, Dalmau, Martin, Pinsker ’10)

> Let Γ be a locally finite reduct of $\langle \mathbb{Z}; \text{succ} \rangle$. Then $\text{CSP}(\Gamma)$ is in P or NP-complete.

Our result:

- Complete classification of the complexity of distance CSPs.
A reduct Γ of $(\mathbb{Z}; \text{succ})$ is **locally finite** if every $x \in \mathbb{Z}$ is contained in finitely many tuples of relations of Γ.

- $(\mathbb{Z}; |y - x| \leq 3)$ is locally finite.
- $(\mathbb{Z}; x = y \lor u = v, \text{succ})$ is not.

Theorem (Bodirsky, Dalmau, Martin, Pinsker '10)

Let Γ be a locally finite reduct of $(\mathbb{Z}; \text{succ})$. Then CSP(\Gamma) is in P or NP-complete.

Our result:

- Complete classification of the complexity of distance CSPs.
- Systematic approach using universal algebraic methods.
Fact

Let Γ be a relational structure, and let R be a relation that has a primitive positive definition in Γ. Then $\text{CSP}(\Gamma)$ and $\text{CSP}(\Gamma, R)$ are polynomial-time equivalent.
Fact
Let Γ be a relational structure, and let R be a relation that has a \textit{primitive positive definition} in Γ. Then CSP(Γ) and CSP(Γ, R) are polynomial-time equivalent.

How to determine if R is pp-definable in Γ?
Fact

Let \(\Gamma \) be a relational structure, and let \(R \) be a relation that has a **primitive positive definition** in \(\Gamma \). Then CSP(\(\Gamma \)) and CSP(\(\Gamma, R \)) are polynomial-time equivalent.

How to determine if \(R \) is pp-definable in \(\Gamma \)?

Definition

Let \(f : D^n \rightarrow D \) and let \(R \subseteq D^k \) be a relation. We say that \(f \) preserves \(R \) iff
Fact

Let Γ be a relational structure, and let R be a relation that has a primitive positive definition in Γ. Then CSP(Γ) and CSP(Γ, R) are polynomial-time equivalent.

How to determine if R is pp-definable in Γ?

Definition

Let $f : D^n \rightarrow D$ and let $R \subseteq D^k$ be a relation. We say that f preserves R iff

$$
\begin{pmatrix}
a_1^1 & a_1^2 & \cdots & a_1^n \\
a_2^1 & a_2^2 & \cdots & a_2^n \\
\vdots & \vdots & \ddots & \vdots \\
a_k^1 & a_k^2 & \cdots & a_k^n \\
\end{pmatrix} \in R
$$

$\in R$ for all $a_1^1, a_1^2, \cdots, a_1^n, a_2^1, a_2^2, \cdots, a_2^n, \cdots, a_k^1, a_k^2, \cdots, a_k^n$.
The Algebraic Approach to Constraint Satisfaction

Fact
Let Γ be a relational structure, and let R be a relation that has a primitive positive definition in Γ. Then $\text{CSP}(\Gamma)$ and $\text{CSP}(\Gamma, R)$ are polynomial-time equivalent.

How to determine if R is pp-definable in Γ?

Definition
Let $f : D^n \rightarrow D$ and let $R \subseteq D^k$ be a relation. We say that f preserves R iff

$$
\begin{pmatrix}
 a_1^1 & a_1^2 & \cdots & a_1^n \\
 a_2^1 & a_2^2 & \cdots & a_2^n \\
 \vdots & \vdots & \ddots & \vdots \\
 a_k^1 & a_k^2 & \cdots & a_k^n \\
\end{pmatrix}
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n \\
\end{pmatrix}
\in R
$$
A polymorphism of Γ is a function that preserves all the relations of Γ.

Lemma

*If Γ is a finite structure, a relation R is pp-definable in Γ iff R is preserved by all the polymorphisms of Γ.***
A **polymorphism** of Γ is a function that preserves all the relations of Γ.

Lemma

*If Γ is a finite structure, a relation R is pp-definable in Γ iff R is preserved by all the polymorphisms of Γ.***

- The previous lemma generalizes to infinite structures which have many **automorphisms**.
A polymorphism of Γ is a function that preserves all the relations of Γ.

Lemma

*If Γ is a finite structure, a relation R is pp-definable in Γ iff R is preserved by all the polymorphisms of Γ.***

- The previous lemma generalizes to infinite structures which have many automorphisms.
- In general, a reduct of $(\mathbb{Z}; \text{succ})$ does not satisfy this condition.
A **polymorphism** of Γ is a function that preserves all the relations of Γ.

Lemma

If Γ is a finite structure, a relation R is pp-definable in Γ iff R is preserved by all the polymorphisms of Γ.

- The previous lemma generalizes to infinite structures which have many **automorphisms**.
- In general, a reduct of $(\mathbb{Z}; \text{succ})$ does not satisfy this condition.
- Solution: we can recover a part of the connection if Γ has enough **elements**.
Definition
Let Γ be a reduct of $(\mathbb{Z}; \text{succ})$. There exists a unique countable model of Th(Γ) which contains every other countable model. We call this structure the ω-saturated model of Γ, denoted by $\omega.\Gamma$. ω-saturation
ω-saturation

Definition

Let Γ be a reduct of \((\mathbb{Z}; \text{succ})\). There exists a unique countable model of Th(Γ) which contains every other countable model. We call this structure the \(\omega\)-saturated model of Γ, denoted by \(\omega.\Gamma\).

\[
\begin{align*}
\rightarrow & \bullet \rightarrow \\
\rightarrow & \bullet \rightarrow \\
\rightarrow & \bullet \rightarrow \\
\rightarrow & \bullet \rightarrow
\end{align*}
\]
Definition

Let Γ be a reduct of $(\mathbb{Z}; \text{succ})$. There exists a unique countable model of $\text{Th}(\Gamma)$ which contains every other countable model. We call this structure the ω-saturated model of Γ, denoted by $\omega.\Gamma$.

Γ and $\omega.\Gamma$ have the same CSP.
ω-saturation

Definition
Let Γ be a reduct of $(\mathbb{Z}; \text{succ})$. There exists a unique countable model of $\text{Th}(\Gamma)$ which contains every other countable model. We call this structure the ω-saturated model of Γ, denoted by $\omega.\Gamma$.

Γ and $\omega.\Gamma$ have the same CSP.

Lemma
Let Γ be a reduct of $(\mathbb{Z}; \text{succ})$. Let R be a relation fo-definable in $(\omega.\mathbb{Z}; \text{succ})$ that consists of n orbits under $\text{Aut}(\omega.\Gamma)$. Then R is pp-definable in $\omega.\Gamma$ iff R is preserved by all the polymorphisms of arity n of $\omega.\Gamma$.
The Result

Theorem (Bodirsky, Martin, AM ’15)

Let Γ be a reduct of $(\mathbb{Z}; \text{succ})$ with a finite signature. There exists a structure Δ with $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$ and such that one of the following cases applies.

1. Δ is a finite structure. In this case, $\text{CSP}(\Gamma)$ is conjectured to be in P or NP-complete.
2. Δ is a reduct of $(\mathbb{Z}; =)$. In this case, $\text{CSP}(\Gamma)$ is either in P or NP-complete (Bodirsky, K´ara ’08).
3. Δ is a reduct of $(\mathbb{Z}; \text{succ})$ whose endomorphisms are all isometries. In this case, $\text{CSP}(\Gamma)$ is in P or NP-complete. Moreover, the tractability of $\text{CSP}(\Gamma)$ is characterized by the existence of certain polymorphisms of finite arity.
Theorem (Bodirsky, Martin, AM ’15)

Let Γ be a reduct of $(\mathbb{Z}; \text{succ})$ with a finite signature. There exists a structure Δ with $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$ and such that one of the following cases applies.

1. Δ is a finite structure. In this case, $\text{CSP}(\Gamma)$ is conjectured to be in P or NP-complete.
The Result

Theorem (Bodirsky, Martin, AM ’15)

Let Γ be a reduct of $(\mathbb{Z}; \text{succ})$ with a finite signature. There exists a structure Δ with $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$ and such that one of the following cases applies.

1. Δ is a finite structure. In this case, $\text{CSP}(\Gamma)$ is conjectured to be in P or NP-complete.

2. Δ is a reduct of $(\mathbb{Z}; =)$. In this case, $\text{CSP}(\Gamma)$ is either in P or NP-complete (Bodirsky, Kára ’08).
The Result

Theorem (Bodirsky, Martin, AM ’15)

Let \(\Gamma \) be a reduct of \((\mathbb{Z}; \text{succ}) \) with a finite signature. There exists a structure \(\Delta \) with \(\text{CSP}(\Gamma) = \text{CSP}(\Delta) \) and such that one of the following cases applies.

1. \(\Delta \) is a finite structure. In this case, \(\text{CSP}(\Gamma) \) is conjectured to be in P or NP-complete.

2. \(\Delta \) is a reduct of \((\mathbb{Z}; \equiv) \). In this case, \(\text{CSP}(\Gamma) \) is either in P or NP-complete (Bodirsky, Kára ’08).

3. \(\Delta \) is a reduct of \((\mathbb{Z}; \text{succ}) \) whose endomorphisms are all isometries. In this case, \(\text{CSP}(\Gamma) \) is in P or NP-complete. Moreover, the tractability of \(\text{CSP}(\Gamma) \) is characterized by the existence of certain polymorphisms of finite arity.
Further projects

- Does the class of reducts of \((\mathbb{Z}; <)\) exhibit a P/NP-complete dichotomy?
Further projects

- Does the class of reducts of \((\mathbb{Z}; <)\) exhibit a P/NP-complete dichotomy?
- More ambitious project: classify the complexity of reducts of \((\mathbb{Z}; <, +)\), i.e., reducts of Presburger Arithmetic.