Discrete Temporal CSPs

Manuel Bodirsky, Barnaby Martin, Antoine Mottet

LCC 2017
Complexity of all decision problems of the form:
Complexity of all decision problems of the form: “does there exist integers satisfying some constraints expressed in some subset of first-order logic with $<$."

Complexity of all decision problems of the form: “does there exist integers satisfying some constraints expressed in some subset of first-order logic with $<$.”

Rich class of problems, exhibits a complexity dichotomy.
Summary

- Complexity of all decision problems of the form: “does there exist integers satisfying some constraints expressed in some subset of first-order logic with <.”
- Rich class of problems, exhibits a complexity dichotomy.
- Interesting point of our proof: use of saturation (from model theory).
Temporal Reasoning

The Right Template

Preservation Theorem

(Complexity)
Definition (CSP(Γ))

Γ = (D; φ₁, . . . , φₙ), called the template of the problem.
Input: a sentence Φ := ∃x₁, . . . , xₙ. ∧ ψᵢ(yᵢ), ψᵢ ∈ {φ₁, . . . , φₙ}.
Question: Is Φ true in Γ?
Definition (CSP(Γ))

Γ = (D; φ₁, ..., φₛ), called the template of the problem.

Input: a sentence Φ := ∃x₁, ..., xₙ. ∨ ψᵢ(yᵢ), ψᵢ ∈ {φ₁, ..., φₛ}.

Question: Is Φ true in Γ?

Example

- 3-SAT: D = {0, 1}, clauses with 3 literals
Definition (CSP(Γ))

Γ = (D; φ₁, . . . , φₜ), called the template of the problem.
Input: a sentence Φ := ∃x₁, . . . , xₙ. ∨ψᵢ(yᵢ), ψᵢ ∈ {φ₁, . . . , φₜ}.
Question: Is Φ true in Γ?

Example

- 3-SAT: D = {0, 1}, clauses with 3 literals
- k-colouring: D = {1, . . . , k}, φ = “≠”
Definition (CSP(Γ))

Γ = (D; φ₁, . . . , φₛ), called the template of the problem.
Input: a sentence Φ := ∃x₁, . . . , xₙ. ∨ ψᵢ(yᵢ), ψᵢ ∈ {φ₁, . . . , φₛ}.
Question: Is Φ true in Γ?

Example

▶ 3-SAT: D = {0, 1}, clauses with 3 literals
▶ k-colouring: D = {1, . . . , k}, φ = "≠"
▶ Digraph acyclicity: D = ℤ, φ = "<"
Definition (CSP(Γ))

\(\Gamma = (D; \phi_1, \ldots, \phi_s) \), called the template of the problem.

Input: a sentence \(\Phi := \exists x_1, \ldots, x_n \land \psi_i(y_i), \psi_i \in \{\phi_1, \ldots, \phi_s\} \).

Question: Is \(\Phi \) true in \(\Gamma \)?

Example

- 3-SAT: \(D = \{0, 1\} \), clauses with 3 literals
- \(k \)-colouring: \(D = \{1, \ldots, k\} \), \(\phi = "\neq" \)
- Digraph acyclicity: \(D = \mathbb{Z} \), \(\phi = "<" \)

Our work: the complexity of discrete temporal satisfiability.
Framework: first-order logic with $y \leq x + k$ for all $k \in \mathbb{Z}$.
Framework: first-order logic with $y \leq x + k$ for all $k \in \mathbb{Z}$.

Definition

$(D; \phi_1, \ldots, \phi_s)$ temporal template if D is \mathbb{Q} or \mathbb{Z} and ϕ_1, \ldots, ϕ_s are first-order over \prec.
Framework: first-order logic with $y \leq x + k$ for all $k \in \mathbb{Z}$.

Definition

$(D; \phi_1, \ldots, \phi_s)$ temporal template if D is \mathbb{Q} or \mathbb{Z} and ϕ_1, \ldots, ϕ_s are first-order over $<$.

Example (Definitions over \mathbb{Z})

- $x \leq y$: $x < y \lor x = y$.

Framework: first-order logic with $y \leq x + k$ for all $k \in \mathbb{Z}$.

Definition

$(D; \phi_1, \ldots, \phi_s)$ temporal template if D is \mathbb{Q} or \mathbb{Z} and ϕ_1, \ldots, ϕ_s are first-order over $<$.

Example (Definitions over \mathbb{Z})

- $x \leq y$: $x < y \lor x = y$.
- $y = x + 1$: $x < y \land \forall z(x < z \Rightarrow y \leq z)$.
Framework: first-order logic with \(y \leq x + k \) for all \(k \in \mathbb{Z} \).

Definition

\((D; \phi_1, \ldots, \phi_s)\) temporal template if \(D \) is \(\mathbb{Q} \) or \(\mathbb{Z} \) and \(\phi_1, \ldots, \phi_s \) are first-order over \(< \).

Example (Definitions over \(\mathbb{Z} \))

- \(x \leq y : x < y \lor x = y \).
- \(y = x + 1 : x < y \land \forall z(x < z \implies y \leq z) \).
- \(y = x + k : \exists z_0, \ldots, z_k(\bigwedge z_{i+1} = z_i + 1 \land z_0 = x \land z_k = y) \).
Framework: first-order logic with $y \leq x + k$ for all $k \in \mathbb{Z}$.

Definition

$(D; \phi_1, \ldots, \phi_s)$ temporal template if D is \mathbb{Q} or \mathbb{Z} and ϕ_1, \ldots, ϕ_s are first-order over $<$.

Example (Definitions over \mathbb{Z})

- $x \leq y$: $x < y \lor x = y$.
- $y = x + 1$: $x < y \land \forall z (x < z \Rightarrow y \leq z)$.
- $y = x + k$: $\exists z_0, \ldots, z_k (\bigwedge z_{i+1} = z_i + 1 \land z_0 = x \land z_k = y)$.
- $y \leq x + k$: $\exists z (z = x + k \land y \leq z)$.
Framework: first-order logic with $y \leq x + k$ for all $k \in \mathbb{Z}$.

Definition

$(D; \phi_1, \ldots, \phi_s)$ temporal template if D is \mathbb{Q} or \mathbb{Z} and ϕ_1, \ldots, ϕ_s are first-order over \prec.

Example (Definitions over \mathbb{Z})

- $x \leq y$: $x < y \lor x = y$.
- $y = x + 1$: $x < y \land \forall z(x < z \Rightarrow y \leq z)$.
- $y = x + k$: $\exists z_0, \ldots, z_k(\bigwedge z_{i+1} = z_i + 1 \land z_0 = x \land z_k = y)$
- $y \leq x + k$: $\exists z(z = x + k \land y \leq z)$
- $x \leq \max(y + k, z + k')$: $x \leq y + k \lor x \leq z + k'$
Feasibility in \mathbb{Z}^n of a system of constraints of the form:

$$x \leq \max(y, z) + k$$
Feasibility in \mathbb{Z}^n of a system of constraints of the form:

$$x \leq \max(y, z) + k$$
Feasibility in \mathbb{Z}^n of a system of constraints of the form:

$$x \leq \max(y, z) + k$$

- Equivalent to deciding winner in deterministic mean-payoff games.
- In P, if k given in unary.
Temporal Reasoning

Difference logic with modular constraints

Fix $d \in \mathbb{N}$, $d \geq 1$.
Feasibility in \mathbb{Z}^n of a system of constraints of the form:

$$a \leq x - y \leq b, x = y \mod d$$
Fix $d \in \mathbb{N}$, $d \geq 1$.

Feasibility in \mathbb{Z}^n of a system of constraints of the form:

$$a \leq x - y \leq b, \quad x = y \mod d$$
Fix \(d \in \mathbb{N}, \; d \geq 1 \).

Feasibility in \(\mathbb{Z}^n \) of a system of constraints of the form:

\[
a \leq x - y \leq b, \; x = y \mod d
\]

▶ If \(d = 1 \), difference logic.

▶ For all \(d \geq 1 \), in P.
Theorem (Bodirsky, Kára, JACM 2010)

Let \(\Gamma \) be a continuous temporal template. Then \(\text{CSP}(\Gamma) \) is in \(P \) or \(NP \)-complete.
Theorem (Bodirsky, Kára, JACM 2010)

Let Γ be a continuous temporal template. Then $\text{CSP}(\Gamma)$ is in P or NP-complete.

Example

- $(\mathbb{Q}, <)$ itself: in P, digraph acyclicity
- $(\mathbb{Q}, x = y \Rightarrow u = v, \leq, \neq)$: in P, Ord-Horn (Nebel, Bürckert)
- $(\mathbb{Q}, x < y < z \lor z < y < x)$: NP-complete, Betweenness
Theorem (Bodirsky, Martin, M)

Let Γ be a discrete temporal constraint. Then $\text{CSP}(\Gamma)$ is in P, NP-complete (or is $\text{CSP}(\Delta)$ for a finite structure Δ).
Theorem (Bodirsky, Martin, M)

Let Γ be a discrete temporal constraint. Then $\text{CSP}(\Gamma)$ is in P, NP-complete (or is $\text{CSP}(\Delta)$ for a finite structure Δ).

Example

- $(\mathbb{Z}, <)$ itself: in P, digraph acyclicity
- $(\mathbb{Z}, x = y \Rightarrow u = v, \leq, \neq)$: NP-complete
- $(\mathbb{Z}, x < y < z \lor z < y < x)$: NP-complete, Betweenness
Theorem (Bodirsky, Martin, M)

Let Γ be a discrete temporal constraint. Then CSP(\(\Gamma\)) is in P, NP-complete (or is CSP(\(\Delta\)) for a finite structure \(\Delta\)).

Example

- $(\mathbb{Z}, <)$ itself: in P, digraph acyclicity
- $(\mathbb{Z}, x = y \Rightarrow u = v, \leq, \neq)$: NP-complete
- $(\mathbb{Z}, x < y < z \lor z < y < x)$: NP-complete, Betweenness
- $(\mathbb{Z}, x \leq \max(y, z), y = x + 1)$: in P, unary Max-Atom
Theorem (Bodirsky, Martin, M)

Let Γ be a \textit{discrete} temporal constraint. Then CSP(Γ) is in P, NP-complete (or is CSP(Δ) for a finite structure Δ).

Example

- $(\mathbb{Z}, <)$ itself: in P, digraph acyclicity
- $(\mathbb{Z}, x = y \Rightarrow u = v, \leq, \neq)$: NP-complete
- $(\mathbb{Z}, x < y < z \lor z < y < x)$: NP-complete, Betweenness
- $(\mathbb{Z}, x \leq \max(y, z), y = x + 1)$: in P, unary Max-Atom
- $(\mathbb{Z}, x = y \Rightarrow u = v, y = x + 1)$: in P
Temporal Reasoning

The Right Template

Preservation Theorem

(Complexity)
It can happen that \(\text{CSP}(\Gamma) = \text{CSP}(\Delta) \) for distinct structures.
It can happen that $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$ for distinct structures. Example: $\text{CSP}(\mathbb{Z}, <) = \text{CSP}(\mathbb{Q}, <)$.
It can happen that $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$ for distinct structures. Example: $\text{CSP}(\mathbb{Z}, <) = \text{CSP}(\mathbb{Q}, <)$.

∀ continuous temporal template Γ, ∃Δ discrete temporal template s.t. $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$.
- It can happen that $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$ for distinct structures. Example: $\text{CSP}(\mathbb{Z}, <) = \text{CSP}(\mathbb{Q}, <)$.

- For every continuous temporal template Γ, there exists a discrete temporal template Δ such that $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$.

- First step: characterise the discrete templates that don’t have the same CSP as a finite structure or a continuous template.
- It can happen that $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$ for distinct structures. Example: $\text{CSP}(\mathbb{Z}, <) = \text{CSP}(\mathbb{Q}, <)$.

- For all continuous temporal template Γ, $\exists \Delta$ discrete temporal template s.t. $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$.

- First step: characterise the discrete templates that don’t have the same CSP as a finite structure or a continuous template.

Theorem

Γ discrete template with finite signature.
It can happen that \(\text{CSP}(\Gamma) = \text{CSP}(\Delta) \) for distinct structures. Example: \(\text{CSP}(\mathbb{Z}, <) = \text{CSP}(\mathbb{Q}, <) \).

\[\forall \text{ continuous temporal template } \Gamma, \exists \Delta \text{ discrete temporal template s.t. } \text{CSP}(\Gamma) = \text{CSP}(\Delta). \]

First step: characterise the discrete templates that don’t have the same CSP as a finite structure or a continuous template.

Theorem

\(\Gamma \) discrete template with finite signature. \(\exists \Delta \) with \(\text{CSP}(\Delta) = \text{CSP}(\Gamma) \) and at least one of the following cases applies:
It can happen that $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$ for distinct structures. Example: $\text{CSP}(\mathbb{Z}, <) = \text{CSP}(\mathbb{Q}, <)$.

∀ continuous temporal template Γ, $\exists \Delta$ discrete temporal template s.t. $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$.

First step: characterise the discrete templates that don’t have the same CSP as a finite structure or a continuous template.

Theorem

Γ discrete template with finite signature. $\exists \Delta$ with $\text{CSP}(\Delta) = \text{CSP}(\Gamma)$ and at least one of the following cases applies:

1. Δ has a finite domain.
2. Δ is a continuous template.
3. The endomorphisms of Δ are isometries.
Definition (Endomorphism)

Γ = (D, φ₁, . . . , φₛ) a structure, f : D → D. f is an endomorphism if it maps edges to edges.
Definition (Endomorphism)

Γ = (D, φ₁, ..., φₘ) a structure, f : D → D. f is an endomorphism if it maps edges to edges.

Remark: Γ and f(Γ) have the same CSP.
Definition (Endomorphism)

\[\Gamma = (D, \phi_1, \ldots, \phi_s) \] is a structure, \(f : D \to D \). \(f \) is an endomorphism if it maps edges to edges.

Remark: \(\Gamma \) and \(f(\Gamma) \) have the same CSP.

Proposition

\(\Gamma \) infinite structure. Then \(\Gamma \) has the same CSP as a finite structure if and only if there exists an endomorphism of \(\Gamma \) whose range is finite.
Definition (Endomorphism)

Γ = (D, φ₁, . . . , φₛ) a structure, \(f: D \rightarrow D \). \(f \) is an endomorphism if it maps edges to edges.

Remark: \(\Gamma \) and \(f(\Gamma) \) have the same CSP.

Proposition

\(\Gamma \) infinite structure. Then \(\Gamma \) has the same CSP as a finite structure if and only if there exists an endomorphism of \(\Gamma \) whose range is finite.

Example

\(\Gamma = (\mathbb{Z}, |x - y| = 1) \). Then \(f: x \mapsto x \mod 2 \) is an endomorphism.
Definition

\[f : \mathbb{Z} \to \mathbb{Z}, \ t \geq 1. \text{ } f \text{ is tightly-}t\text{-bounded if} \]

\[\forall x \in \mathbb{Z}, |f(x + t) - f(x)| \leq t. \]
Definition

$f : \mathbb{Z} \to \mathbb{Z}, \ t \geq 1$. f is tightly-t-bounded if

$$\forall x \in \mathbb{Z}, |f(x + t) - f(x)| \leq t.$$
Definition

\[f : \mathbb{Z} \to \mathbb{Z}, \ t \geq 1. \ f \text{ is tightly-}t\text{-bounded if} \]
\[\forall x \in \mathbb{Z}, |f(x + t) - f(x)| \leq t. \]

- Fix \(\Gamma = (\mathbb{Z}; \ldots) \) discrete temporal template.
- Suppose that for each \(t \), there exists an endomorphism \(f_t \) of \(\Gamma \) which is not tightly-\(t \)-bounded.
Definition

\(f : \mathbb{Z} \rightarrow \mathbb{Z}, \ t \geq 1. \ f \) is tightly-\(t \)-bounded if

\[
\forall x \in \mathbb{Z}, |f(x + t) - f(x)| \leq t.
\]

- Fix \(\Gamma = (\mathbb{Z}; \ldots) \) discrete temporal template.
- Suppose that for each \(t \), there exists an endomorphism \(f_t \) of \(\Gamma \) which is not tightly-\(t \)-bounded.
- Then \(\forall x \neq y \in \mathbb{Z} \) and \(\forall k \in \mathbb{Z}, \exists e \in \text{End}(\Gamma) \) such that \(|e(x) - e(y)| > k \).
Definition

\(f : \mathbb{Z} \to \mathbb{Z}, \ t \geq 1. \ f \) is tightly-\(t \)-bounded if

\[\forall x \in \mathbb{Z}, |f(x + t) - f(x)| \leq t. \]

- Fix \(\Gamma = (\mathbb{Z}; \ldots) \) discrete temporal template.
- Suppose that for each \(t \), there exists an endomorphism \(f_t \) of \(\Gamma \) which is not tightly-\(t \)-bounded.
- Then \(\forall x \neq y \in \mathbb{Z} \) and \(\forall k \in \mathbb{Z}, \exists e \in \text{End}(\Gamma) \) such that \(|e(x) - e(y)| > k. \)
- So what?
\textbf{Definition}

\((\mathbb{Q}, \mathbb{Z}, <)\) is the structure on \(\mathbb{Q} \times \mathbb{Z}\) with the lexicographic ordering.
\(\Gamma = (\mathbb{Z}; \phi_1, \ldots, \phi_s)\) a discrete temporal template,
\(\mathbb{Q}.\Gamma = (\mathbb{Q}, \mathbb{Z}, \phi_1, \ldots, \phi_s)\) corresponding template on \(\mathbb{Q} \times \mathbb{Z}\).
Definition

$(\mathbb{Q}, \mathbb{Z}, <)$ is the structure on $\mathbb{Q} \times \mathbb{Z}$ with the lexicographic ordering.

$\Gamma = (\mathbb{Z}; \phi_1, \ldots, \phi_s)$ a discrete temporal template,

$\mathbb{Q}.\Gamma = (\mathbb{Q}.\mathbb{Z}, \phi_1, \ldots, \phi_s)$ corresponding template on $\mathbb{Q} \times \mathbb{Z}$.

Fact: $\text{CSP}(\Gamma) = \text{CSP}(\mathbb{Q}.\Gamma)$.
Definition

\((\mathbb{Q}, \mathbb{Z}, <)\) is the structure on \(\mathbb{Q} \times \mathbb{Z}\) with the lexicographic ordering.

\(\Gamma = (\mathbb{Z}; \phi_1, \ldots, \phi_s)\) a discrete temporal template,

\(\mathbb{Q}.\Gamma = (\mathbb{Q}, \mathbb{Z}, \phi_1, \ldots, \phi_s)\) corresponding template on \(\mathbb{Q} \times \mathbb{Z}\).

Fact: \(\text{CSP}(\Gamma) = \text{CSP}(\mathbb{Q}.\Gamma)\).

- Fix \(\Gamma\) a discrete template.
Definition

\((\mathbb{Q},\mathbb{Z},<)\) is the structure on \(\mathbb{Q} \times \mathbb{Z}\) with the lexicographic ordering.

\(\Gamma = (\mathbb{Z}; \phi_1, \ldots, \phi_s)\) a discrete temporal template,

\(\mathbb{Q}.\Gamma = (\mathbb{Q},\mathbb{Z}, \phi_1, \ldots, \phi_s)\) corresponding template on \(\mathbb{Q} \times \mathbb{Z}\).

Fact: \(\text{CSP}(\Gamma) = \text{CSP}(\mathbb{Q}.\Gamma)\).

- Fix \(\Gamma\) a discrete template.
- Suppose that for each \(t\), there exists an endomorphism \(f_t\) of \(\mathbb{Q}.\Gamma\) which is not tightly-\(t\)-bounded.
Definition

\((\mathbb{Q} \times \mathbb{Z}, <)\) is the structure on \(\mathbb{Q} \times \mathbb{Z}\) with the lexicographic ordering.
\(\Gamma = (\mathbb{Z}; \phi_1, \ldots, \phi_s)\) a discrete temporal template,
\(\mathbb{Q}.\Gamma = (\mathbb{Q} \times \mathbb{Z}, \phi_1, \ldots, \phi_s)\) corresponding template on \(\mathbb{Q} \times \mathbb{Z}\).

Fact: \(\text{CSP}(\Gamma) = \text{CSP}(\mathbb{Q}.\Gamma)\).

- Fix \(\Gamma\) a discrete template.
- Suppose that for each \(t\), there exists an endomorphism \(f_t\) of \(\mathbb{Q}.\Gamma\) which is not tightly-\(t\)-bounded.
- Then \(\forall x \neq y \in \mathbb{Q} \times \mathbb{Z}, \forall k, \exists e \in \text{End}(\mathbb{Q}.\Gamma)\) such that \(|e(x) - e(y)| > k|\).
Definition

\((\mathbb{Q}, \mathbb{Z}, <)\) is the structure on \(\mathbb{Q} \times \mathbb{Z}\) with the lexicographic ordering.
\(\Gamma = (\mathbb{Z}; \phi_1, \ldots, \phi_s)\) a discrete temporal template,
\(\mathbb{Q}.\Gamma = (\mathbb{Q}.\mathbb{Z}, \phi_1, \ldots, \phi_s)\) corresponding template on \(\mathbb{Q} \times \mathbb{Z}\).

Fact: \(\text{CSP}(\Gamma) = \text{CSP}(\mathbb{Q}.\Gamma)\).

- Fix \(\Gamma\) a discrete template.
- Suppose that for each \(t\), there exists an endomorphism \(f_t\) of \(\mathbb{Q}.\Gamma\) which is not tightly-\(t\)-bounded.
- Then \(\forall x \neq y \in \mathbb{Q}.\mathbb{Z}, \forall k, \exists e \in \text{End}(\mathbb{Q}.\Gamma)\) such that \(|e(x) - e(y)| > k\).
- Let \(k \rightarrow +\infty\) (using König’s tree lemma)
(\mathbb{Q} \times \mathbb{Z}, <) is the structure on \mathbb{Q} \times \mathbb{Z} with the lexicographic ordering.
\Gamma = (\mathbb{Z}; \phi_1, \ldots, \phi_s) a discrete temporal template,
\mathbb{Q}.\Gamma = (\mathbb{Q} \times \mathbb{Z}, \phi_1, \ldots, \phi_s) corresponding template on \mathbb{Q} \times \mathbb{Z}.

Fact: \text{CSP}(\Gamma) = \text{CSP}(\mathbb{Q}.\Gamma).

- Fix \Gamma a discrete template.
- Suppose that for each t, there exists an endomorphism \(f_t \) of \(\mathbb{Q}.\Gamma \) which is not tightly-\(t \)-bounded.
- Then \(\forall x \neq y \in \mathbb{Q} \times \mathbb{Z}, \forall k, \exists e \in \text{End}(\mathbb{Q}.\Gamma) \) such that \(|e(x) - e(y)| > k \).
- Let \(k \to +\infty \) (using König’s tree lemma)
- \(\exists e \in \text{End}(\mathbb{Q}.\Gamma) \) such that

\[\forall x, y \in \mathbb{Q} \times \mathbb{Z}, e(x) \neq e(y) \Rightarrow e(x) - e(y) = \infty. \]
Let Γ be a discrete template with finite signature and without finite-range endomorphisms. Exactly one of the following applies:

- There exists a continuous template Δ with $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$.
- There exists $t > 0$ such that every endomorphism of $\mathbb{Q}.\Gamma$ is tightly-t-bounded.
Theorem

Let Γ be a discrete template with finite signature and without finite-range endomorphisms. Exactly one of the following applies:

- There exists a continuous template Δ with $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$.
- There exists $t > 0$ such that every endomorphism of $\mathbb{Q}.\Gamma$ is tightly-t-bounded.

f is tightly-t-bounded if $\forall x \in \mathbb{Z}, |f(x + t) - f(x)| \leq t$.

Antoine Mottet
Discrete Temporal CSPs
15/21
The Right Template

Petrus

Theorem

Let Γ be a discrete template with finite signature and without finite-range endomorphisms. Exactly one of the following applies:

- There exists a continuous template Δ with $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$.

- There exists $t > 0$ such that every endomorphism of $\mathbb{Q}.\Gamma$ is tightly-t-bounded.

f is tightly-t-bounded if $\forall x \in \mathbb{Z}, |f(x + t) - f(x)| \leq t$.

Lemma

If $f \in \text{End}(\mathbb{Q}.\Gamma)$ is tightly-t-bounded and $\mathbb{Q}.\Gamma$ does not have finite-range endomorphisms, then we have

$$|f(x + t) - f(x)| = t.$$
Definition

Let Γ be a discrete template, and let $t \geq 1$. $(\mathbb{Q}.\Gamma)/t$ is the structure induced by $\mathbb{Q}.\Gamma$ on $\{t \cdot z : z \in \mathbb{Z}\}$.
Definition

Let Γ be a discrete template, and let $t \geq 1$. $(\mathbb{Q}.\Gamma)/t$ is the structure induced by $\mathbb{Q}.\Gamma$ on $\{t \cdot z : z \in \mathbb{Z}\}$.

Fact: $(\mathbb{Q}.\Gamma)/t$ is isomorphic to $\mathbb{Q}.$\Delta for some discrete template Δ.
Definition

Let Γ be a discrete template, and let $t \geq 1$. $(\mathbb{Q} \cdot \Gamma)/t$ is the structure induced by $\mathbb{Q} \cdot \Gamma$ on $\{t \cdot z : z \in \mathbb{Z}\}$.

Fact: $(\mathbb{Q} \cdot \Gamma)/t$ is isomorphic to $\mathbb{Q} \cdot \Delta$ for some discrete template Δ.
Definition

Let Γ be a discrete template, and let $t \geq 1$. $(\mathbb{Q}.\Gamma)/t$ is the structure induced by $\mathbb{Q}.\Gamma$ on $\{t \cdot z : z \in \mathbb{Z}\}$.

Fact: $(\mathbb{Q}.\Gamma)/t$ is isomorphic to $\mathbb{Q}.\Delta$ for some discrete template Δ.

\[\text{Diagram}\]
Definition

Let Γ be a discrete template, and let $t \geq 1$. $(\mathbb{Q}.\Gamma)/t$ is the structure induced by $\mathbb{Q}.\Gamma$ on $\{t \cdot z : z \in \mathbb{Z}\}$.

Fact: $(\mathbb{Q}.\Gamma)/t$ is isomorphic to $\mathbb{Q}.\Delta$ for some discrete template Δ.

![Diagram](image-url)
Definition

Let Γ be a discrete template, and let $t \geq 1$. $(\mathbb{Q}.\Gamma)/t$ is the structure induced by $\mathbb{Q}.\Gamma$ on $\{t \cdot z : z \in \mathbb{Z}\}$.

Fact: $(\mathbb{Q}.\Gamma)/t$ is isomorphic to $\mathbb{Q}.\Delta$ for some discrete template Δ.

The endomorphisms of $(\mathbb{Q}.\Gamma)/t$ are tightly-1-bounded.
Definition

Let Γ be a discrete template, and let $t \geq 1$. $(\mathbb{Q}.\Gamma)/t$ is the structure induced by $\mathbb{Q}.\Gamma$ on $\{ t \cdot z : z \in \mathbb{Z} \}$.

Fact: $(\mathbb{Q}.\Gamma)/t$ is isomorphic to $\mathbb{Q}.\Delta$ for some discrete template Δ.

- The endomorphisms of $(\mathbb{Q}.\Gamma)/t$ are tightly-1-bounded.
- $\text{CSP}(\Gamma) = \text{CSP}(\Delta)$.
We proved:

Theorem

Γ a discrete template with finite signature. ∃Δ with CSP(Δ) = CSP(Γ) and at least one of the following cases applies:

1. Δ has a finite domain.
2. Δ is a continuous template.
3. The endomorphisms of \(\mathbb{Q}.\Delta \) are isometries.
Temporal Reasoning

The Right Template

Preservation Theorem

(Complexity)
A structure is **saturated** if every “imaginary” element that can be described by a finitely consistent set of first-order formulas exists.
A structure is saturated if every “imaginary” element that can be described by a finitely consistent set of first-order formulas exists.

Theorem

Δ discrete template, $R \subseteq (\mathbb{Q} \cdot \mathbb{Z})^k$ relation with a first-order definition in \prec. If R is generated by n tuples, then

$$\{\exists, \land\}$$-definability in $\mathbb{Q} \cdot \Delta$

\uparrow

invariance under n-ary polymorphisms of $\mathbb{Q} \cdot \Delta$
A structure is saturated if every “imaginary” element that can be described by a finitely consistent set of first-order formulas exists.

Theorem

Δ discrete template, $R \subseteq (\mathbb{Q} \times \mathbb{Z})^k$ relation with a first-order definition in \prec. If R is generated by n tuples, then

\[
\{\exists, \land\}-\text{definability in } \mathbb{Q}.\Delta \quad \uparrow \quad \text{invariance under } n\text{-ary polymorphisms of } \mathbb{Q}.\Delta
\]

A polymorphism of is a homomorphism $(\mathbb{Q}.\Delta)^n \to \mathbb{Q}.\Delta$ for $n \in \mathbb{N}$.
A structure is **saturated** if every “imaginary” element that can be described by a finitely consistent set of first-order formulas exists.

Theorem

\(\Delta \) discrete template, \(R \subseteq (\mathbb{Q},\mathbb{Z})^k \) relation with a first-order definition in \(< \). If \(R \) is generated by \(n \) tuples, then

\[
\{\exists, \land\}\text{-definability in } \mathbb{Q}.\Delta \\
\uparrow \\
invariance \text{ under } n\text{-ary polymorphisms of } \mathbb{Q}.\Delta
\]

A **polymorphism** of is a homomorphism \((\mathbb{Q},\Delta)^n \to \mathbb{Q}.\Delta \) for \(n \in \mathbb{N} \).

Consequence: when endos of \(\mathbb{Q}.\Delta \) are isometries, \(y = x + 1 \) is \(\{\exists, \land\}\text{-definable} \) or \(|y - x| = k \) is, for all \(k \in \mathbb{Z} \).
Temporal Reasoning

The Right Template

Preservation Theorem
Theorem (Bodirsky, Martin, M)

Γ a discrete temporal template with finite signature. ∃Δ with CSP(Δ) = CSP(Γ) and at least one of the following cases applies:
Theorem (Bodirsky, Martin, M)

Γ a discrete temporal template with finite signature. $\exists \Delta$ with $\text{CSP}(\Delta) = \text{CSP}(\Gamma)$ and at least one of the following cases applies:

1. Δ has a finite domain.
Theorem (Bodirsky, Martin, M)

Γ a discrete temporal template with finite signature. ∃Δ with CSP(Δ) = CSP(Γ) and at least one of the following cases applies:

1. Δ has a finite domain.
2. Δ is a continuous template.
Theorem (Bodirsky, Martin, M)

\(\Gamma \) a discrete temporal template with finite signature. \(\exists \Delta \) with \(\text{CSP}(\Delta) = \text{CSP}(\Gamma) \) and at least one of the following cases applies:

1. \(\Delta \) has a finite domain.
2. \(\Delta \) is a continuous template.

Or \(\Delta \) is a discrete template containing \(y = x + 1 \) or \(|y - x| = k \) for all \(k \in \mathbb{Z} \), and:

3. The relations of \(\Delta \) are Horn-definable, and \(\text{CSP}(\Delta) \) is in P.
4. The relations of \(\Delta \) are max-closed, and \(\text{CSP}(\Delta) \) is in P.
5. \(\text{CSP}(\Delta) \) is NP-complete.
Theorem (Bodirsky, Martin, M)

Γ a discrete temporal template with finite signature. ∃Δ with CSP(Δ) = CSP(Γ) and at least one of the following cases applies:

1. Δ has a finite domain.
2. Δ is a continuous template.
Or Δ is a discrete template containing y = x + 1 or |y − x| = k for all k ∈ ℤ, and:

3. The relations of Δ are Horn-definable, and CSP(Δ) is in P.
4. The relations of Δ are max-closed, and CSP(Δ) is in P.
5. CSP(Δ) is NP-complete.
Theorem (Bodirsky, Martin, M)

Γ a discrete temporal template with finite signature. ∃Δ with CSP(Δ) = CSP(Γ) and at least one of the following cases applies:

1. Δ has a finite domain.
2. Δ is a continuous template.

Or Δ is a discrete template containing y = x + 1 or |y − x| = k for all k ∈ ℤ, and:

3. The relations of Δ are Horn-definable, and CSP(Δ) is in P.
4. The relations of Δ are max-closed, and CSP(Δ) is in P.
5. CSP(Δ) is NP-complete.

Complexity dichotomy modulo the Feder-Vardi conjecture (Bulatov-Zhuk-... theorem).