(1) \( \forall x \in \mathbb{N} \; \exists y \in \mathbb{N} \; \exists z \in \mathbb{N} \; \exists w \in \mathbb{N} \quad x = y + z + w \).

(2) Für alle \( x \), \( y \in \mathbb{N} \) gilt: \( x \cdot y \cdot z \cdot w \leq x \cdot y \cdot z \cdot w \).

Beweis: Sei \( x \), \( y \in \mathbb{N} \) gegeben. Wähle \( z = x \cdot y \) und \( w = 1 \).

(3) Für \( \theta \in \mathbb{N} \) gilt \( \theta \geq 2/\theta \), da \( \theta \) ungerade und \( \theta > 1 \).

L / \theta \geq \frac{2}{\theta}.

(2b) Für \( x \in \mathbb{N} \) sei \( P(x) = \exists y \in \mathbb{N} \) "\( y \) ist eine Zahl".

\[ P(x) = \exists y \in \mathbb{N} \quad \exists z \in \mathbb{N} \quad \exists w \in \mathbb{N} \quad x = y + z + w \]

\[ = \exists y \in \mathbb{N} \quad \exists z \in \mathbb{N} \quad \exists w \in \mathbb{N} \quad x = y \cdot z \cdot w \cdot 1 \]

\[ = \exists y \in \mathbb{N} \quad \exists z \in \mathbb{N} \quad \exists w \in \mathbb{N} \quad x = y \cdot z \cdot w \cdot 1 \]

\[ = \exists y \in \mathbb{N} \quad \exists z \in \mathbb{N} \quad \exists w \in \mathbb{N} \quad x = y \cdot z \cdot w \cdot 1 \]

\[ = \exists y \in \mathbb{N} \quad \exists z \in \mathbb{N} \quad \exists w \in \mathbb{N} \quad x = y \cdot z \cdot w \cdot 1 \]

(4) Für jedes \( x \in \mathbb{N} \) sei \( P(x) = \exists y \in \mathbb{N} \) \( x = y \) und \( y > x \).

Dann sei \( z \) definiert als: \( z = x + y - 1 \).

Dann gilt: \( x = y \cdot z \cdot w \cdot 1 \).

\[ \exists y \in \mathbb{N} \quad \exists z \in \mathbb{N} \quad \exists w \in \mathbb{N} \quad x = y \cdot z \cdot w \cdot 1 \]

(5) Für jedes \( x \in \mathbb{N} \) sei \( P(x) = \exists y \in \mathbb{N} \) \( x = y \) und \( y > x \).

Dann sei \( z \) definiert als: \( z = x + y - 1 \).

Dann gilt: \( x = y \cdot z \cdot w \cdot 1 \).

\[ \exists y \in \mathbb{N} \quad \exists z \in \mathbb{N} \quad \exists w \in \mathbb{N} \quad x = y \cdot z \cdot w \cdot 1 \]
(4) Solve \( U \) under two ways. Set \( \xi = \xi_U \) (Unsymmetrical) and \( \eta = \eta_T \). Draw in \( F_l := (U, \eta, \xi) \) diagram and \( \eta_U \).

Set \( \xi_U := \xi_U \) (diagram) and \( \eta_U := \eta_U \).

Draw \( U \) with \( M \). Draw \( M \) for \( u, w \). We take \( \xi_U, \eta_U \) and \( \eta_U = \eta_U \) (Unsymmetrical) in \( U \) with \( M \). Draw \( M \) for \( u, w \). We take \( \xi_U, \eta_U \) and \( \eta_U = \eta_U \) (Unsymmetrical) in \( U \).
Seite L3

(12) (1) Für alle \( \lambda \in \mathbb{N} \) gilt: \( I_{\text{ver}} \cdot \text{Haus} + I_{\text{ver}} \cdot \text{Haus} = I_{\text{ver}} \cdot \text{Haus} \).

\[
\begin{align*}
\beta &= 2 \alpha + \beta \in \mathbb{N}^* \\
&= \text{Haus} + \text{Haus} + \text{Haus} + \text{Haus} \\
&= \text{Haus} + \text{Haus} + \text{Haus} + \text{Haus}.
\end{align*}
\]

(12) (2) Für alle \( \lambda \in \mathbb{N} \) gilt: \( I_{\text{ver}} \cdot \text{Haus} + I_{\text{ver}} \cdot \text{Haus} = I_{\text{ver}} \cdot \text{Haus} \).

\[
\begin{align*}
\beta &= 2 \alpha + \beta \in \mathbb{N}^* \\
&= \text{Haus} + \text{Haus} + \text{Haus} + \text{Haus} \\
&= \text{Haus} + \text{Haus} + \text{Haus} + \text{Haus}.
\end{align*}
\]

(13) (1) Für alle \( \lambda \in \mathbb{N} \) gilt: \( I_{\text{ver}} \cdot \text{Haus} + I_{\text{ver}} \cdot \text{Haus} = I_{\text{ver}} \cdot \text{Haus} \).

\[
\begin{align*}
\beta &= 2 \alpha + \beta \in \mathbb{N}^* \\
&= \text{Haus} + \text{Haus} + \text{Haus} + \text{Haus} \\
&= \text{Haus} + \text{Haus} + \text{Haus} + \text{Haus}.
\end{align*}
\]

(13) (2) Für alle \( \lambda \in \mathbb{N} \) gilt: \( I_{\text{ver}} \cdot \text{Haus} + I_{\text{ver}} \cdot \text{Haus} = I_{\text{ver}} \cdot \text{Haus} \).

\[
\begin{align*}
\beta &= 2 \alpha + \beta \in \mathbb{N}^* \\
&= \text{Haus} + \text{Haus} + \text{Haus} + \text{Haus} \\
&= \text{Haus} + \text{Haus} + \text{Haus} + \text{Haus}.
\end{align*}
\]

(14) (1) Für alle \( \lambda \in \mathbb{N} \) gilt: \( I_{\text{ver}} \cdot \text{Haus} + I_{\text{ver}} \cdot \text{Haus} = I_{\text{ver}} \cdot \text{Haus} \).

\[
\begin{align*}
\beta &= 2 \alpha + \beta \in \mathbb{N}^* \\
&= \text{Haus} + \text{Haus} + \text{Haus} + \text{Haus} \\
&= \text{Haus} + \text{Haus} + \text{Haus} + \text{Haus}.
\end{align*}
\]