Lösung zu Ü4_P1 (b):

$T_1 \rightarrow T_2$

$T_2 \rightarrow T_3$

$T_3 \rightarrow T_4$

$T_4 \rightarrow T_5$

$T_5 \rightarrow T_6$
(a) Sei $\mathbf{y} \in \mathbf{M}^p$ unabhängig in \mathbf{M}, d.h. $f_\mathbf{y} : \mathbf{S}^p \rightarrow \mathbf{M}$ ist injektiv.

Wegen $\text{span}_\mathbf{M} \mathbf{y} = \text{Im} f_\mathbf{y}$ folgt hieraus bereits:

$$\# \text{span}_\mathbf{M} \mathbf{y} = \#(\mathbf{S}^p) = \#(\mathbf{S}^p).$$

(b) Sei $\mathbf{y} \in \mathbf{M}^p$ mit $\mathbf{P} = [n]$; setze $U_i := \{ \lambda \epsilon \mathbf{S}^p \mid \text{supp } \lambda \subseteq \{i\} \}$

und $U_i := \{ \lambda \epsilon \mathbf{S}^p \mid \lambda \epsilon U_i \}$; dann $U_i = \text{span}_\mathbf{M} \{ \mathbf{y} \epsilon [i] \}$ für alle $i \in [n]$.

(i) Sei \mathbf{y} unabhängig in \mathbf{M}, d.h. $f_\mathbf{y}$ ist injektiv.

Angenommen, es gibt ein $i \epsilon [n]$ mit $\mathbf{y}_i \epsilon U_{i-1}$.

Dann existiert ein $\lambda \epsilon U_{i-1}$ mit $\mathbf{y}_i = \lambda \epsilon \mathbf{y}$, also ist $\mathbf{S}_i \mathbf{y} = \mathbf{y}_i = \lambda \epsilon \mathbf{y}$,

dh. $(\mathbf{S}_i, \lambda) \epsilon \ker f_\mathbf{y}$ - aber $\mathbf{S}_i \neq \lambda$ (da $\lambda \epsilon U_{i-1}$ und $\mathbf{S}_i \epsilon U_{i-1}$),

ein Widerspruch zur Injektivität von $f_\mathbf{y}$.

(ii) Sei $\mathbf{y}_i \epsilon U_{i-1}$ für alle $i \epsilon [n]$. Angenommen, \mathbf{y} ist nicht

unabhängig, d.h. $f_\mathbf{y}$ ist nicht injektiv. Wäre dann $i \epsilon [n]$ minimal mit $f_\mathbf{y}$ ist auf U_i nicht injektiv.

Dann existieren $\lambda, \mu \epsilon U_i$ mit $\lambda \neq \mu$ und $\lambda \epsilon \mathbf{y} = \mu \epsilon \mathbf{y}$.

Folglich liegen $\lambda' := \lambda - \mathbf{S}_i \mathbf{y}$ und $\mu' := \mu - \mathbf{S}_i \mathbf{y}$ in U_{i-1}, und es ist $\mathbf{y} \epsilon \mathbf{y} + \lambda' \mathbf{S}_i \mathbf{y} + \mu' \mathbf{S}_i \mathbf{y}$ (*)

FALL 1 ($\lambda_i = \mu_i$). Dann ist $\lambda \epsilon \mathbf{y} = \mu \epsilon \mathbf{y}$, woraus sofort $\lambda = \mu$ folgt (da \mathbf{y} minimal); also ist $\lambda = \mu$.

FALL 2 ($\lambda_i \neq \mu_i$). Dann ist $\mathbf{y}_i = (\mu_i - \lambda_i) \epsilon \lambda_i \epsilon U_{i-1}$

- ebenfalls ein Widerspruch.

Also ist \mathbf{y} unabhängig in \mathbf{M}.

"U4 C1 (c)" Sehe $U_h := \{ y \in M^k | y \text{ unabhängig in } M \} \text{ für } \mathfrak{h} \in \mathbb{N}$.

Nach (6) ist für $h \in \mathbb{N}$ stets $U_{h+1} = \{ y \in M^{k+1} | y_0 \in M_k \text{ und } y_{h+1} \in \text{ span}_M (y_{1, h+1}) \} \text{ (**)}

Möglichekeiten für y_{h+1} sind hier gerade:

$\# (M - \text{ span}_M (y_{1, h+1})) = M - \# \text{ span}_M (y_{1, h+1})$

$\Leftrightarrow (\# S)^n - (\# S)^h = q^n - q^h \text{ falls } y \in M^{k+1}$

Hieraus folgt: $\# U_{h+1} \equiv (\# U_h) \cdot (q^n - q^h)$, d.h. $U_{h+1} = U_h \cdot (q^n - q^h) \text{ für } u_h := \# U_h$.

Wegen $u_0 = 1$ folgt sofort $u_1 = q^n - 1, \ldots, u_n = (q^n - q) \cdots (q^n - q^{n-1})$.

(d) Für $\alpha \in S^{p \times p}$ gilt: α invertierbar, d.h. $\alpha \in GL_p S$ \checkmark

$\Leftrightarrow f_{\alpha} = f_{r_{\alpha}} \text{ invertierbar, d.h. } f_{\alpha} = f_{r_{\alpha}} \in \text{ Aut Mod}(S^p)$

$\Rightarrow r_{\alpha} \text{ Basis von } \text{ Mod}(S, p)$. \checkmark
U4_H1

Sei G ein ungerichtetes Netzwerk.

Bemerkung

Zur den Basen T_1

Finde eine Folge von Basen T_2, T_3, T_4 damit, dass es zu jedem $i \leq 5$ Kanten $c_i \in T_i$ und $e_i \in T_{i+1}$ mit

$$(T_i - tc_i) + te_i = T_{i+1}$$

gilt, wenn T_1 durch \bigstar und T_6 durch \bigstar gegeben sind.

$T_1 = c_1 \bigstar \quad \quad T_2 = e_1 \bigstar$

$T_2 = c_2 \bigstar \quad \quad T_3 = e_2 \bigstar$

$T_3 = c_3 \bigstar \quad \quad T_4 = e_3 \bigstar$

$T_4 = c_4 \bigstar \quad \quad T_5 = e_4 \bigstar$

$T_5 = c_5 \bigstar \quad \quad T_6 = e_5 \bigstar$
Lösung Ü4 H3

a) \(GL(2,2) = \{(10,01), (01,10), (10,11), (01,01)\} \)

\[
\begin{align*}
(10) & \iff (1) = \text{id} \\
(01) & \iff (2) \\
(10) & \iff (3) \\
(11) & \iff (13)
\end{align*}
\]

"1" = (0,1) \[1 \ldots 3\] "2" = (4,0) "3" = (1,1) Binsenfahrt "also alle Paare..." gelten auch direkt:

\[g = 2 \]

\[\#GL(2,9) = (9-1)(9^2-9) = 6
\]
siehe H4_C1

b) \[\#GL(3,9) = (9^2-1)(9^3-9)(9^4-9^2) = 7 \cdot 6 \cdot 4 = 168 \]
\[\#T^3_9 = 9 \cdot 9 \cdot 9 = 9^3 = 27 \]
\[\#GL_{(3,9)} = (9^2-1) \cdot (9^3-9^2) = 7 \cdot 6 \cdot 4 = 168 \]

= \# geord. Basen \((3,2)\)

\[\frac{\#GL_{(n,q)}}{n!} = \# ungeord. Basen = \frac{168}{3!} = \frac{7 \cdot 6 \cdot 4}{6} = 28 \]
\[\left(\begin{array}{c}
3 \\
2
\end{array}\right) = 3 \cdot 2 = 6 \]

\[\binom{9}{m} \cdot \binom{m}{1} = (9^2-1) \cdot (2^3-1) = 7 \cdot 6 \cdot 5 = 35 \]

28 ungeordnete Basen von 35 3-elt. Teilungen aus \(Z^3_2 \oplus F_3\) also 28 von 35
zu Ü4_H3

Liste (lex. geord.) der 3-Talmaße von \(\mathbb{Z}_2^3 \):
- es sind 35:

<table>
<thead>
<tr>
<th>001</th>
<th>010</th>
<th>011</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>100</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>101</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>110</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>111</td>
<td>+</td>
</tr>
<tr>
<td>011</td>
<td>100</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>110</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>111</td>
<td>+</td>
</tr>
<tr>
<td>010</td>
<td>011</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>110</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>111</td>
<td>+</td>
</tr>
<tr>
<td>110</td>
<td>111</td>
<td>+</td>
</tr>
<tr>
<td>010</td>
<td>011</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>110</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>111</td>
<td>+</td>
</tr>
<tr>
<td>101</td>
<td>110</td>
<td>+</td>
</tr>
<tr>
<td>110</td>
<td>111</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>110</td>
<td>+</td>
</tr>
<tr>
<td>110</td>
<td>111</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>100</td>
</tr>
<tr>
<td>110</td>
<td>111</td>
<td>+</td>
</tr>
<tr>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

Häus Basis
ja (Basis)