MATHEMATISCHE

www.mn-journal.org

Founded in 1948 by Erhard Schmidt
Edited by R. Mennicken (Regensburg)
in co-operation with
F. Finster (Regensburg), F. Gesztesy (Columbia-Missouri),
K. Hulek (Hannover), F. Klopp (Villetaneuse),
R. Schilling (Dresden)
On positive invertibility of operators and their decompositions

M. R. Weber

1 Institut für Analysis, Fachrichtung Mathematik, Technische Universität Dresden, 01062 Dresden, Germany

Received 7 April 2008, revised 22 June 2009, accepted 2 July 2009
Published online 2 October 2009

Key words Ordered normed space, positively invertible operator, invertible matrix, uniformly positive functional, decomposition

MSC (2000) Primary: 46A40, 46A55, 15A48; Secondary: 47B60, 52A07

In Banach spaces ordered by a normal cone that contains interior points the positive invertibility of operators is studied. If there exists a uniformly positive functional then any positively invertible operator \(A \) possesses a \(B \)-decomposition, i.e., a positive decomposition \(A = U - V \) with the properties: \(U^{-1} \) exists, \(\text{tr}(U^{-1}) \geq 0 \), \(Ax \geq 0 \), \(Ux \geq 0 \) imply \(x \geq 0 \) and \(\text{tr}(Vu^{-1}) < 1 \). Earlier it was shown that the existence of a \(B \)-decomposition with \(\text{tr}(Vu^{-1}) < 1 \) is sufficient for the positive invertibility of the operator \(A \). Peris’ result is obtained as a special case of the main theorem. The decomposition is demonstrated for a positively invertible operator in a Banach space ordered by an ice cream cone.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Let \((X, X_+, \| - \|)\) and \((Y, Y_+, \| - \|)\) be ordered normed spaces. Denote by \(L(X,Y) \) the vector space of all linear continuous operators \(A : X \rightarrow Y \). We shall write \(L(X) \) for \(L(X, X) \). An operator \(A \in L(X, Y) \) is said to be positive \((A \geq 0)\) if \(A(X_+) \subset Y_+ \).

Inverse-monotone operators (i.e., \(Ax \geq 0 \) implies \(x \geq 0 \)), and in particular matrices of such kind, are of interest in connection with the existence of a positive solution for equations

\[
Ax = y, \quad \text{where} \quad y \in Y_+
\]

(see for e.g. [8], [9], [15], [16], [23]). M. I. Gil studied the case of integral operators in [11] and the positive invertibility of some operators in separable Hilbert lattices in [13]. Concerning matrices much effort has been made in order to obtain necessary and/or sufficient conditions for the inverse monotony (see [6], [10], [12], [17], [21] and others). The paper [15] contains interesting results of majorizing and minorizing types. More exactly, in order to state at least one of these results, the positive invertibility of an operator \(C \) (this means \(C^{-1} \) exists in \(L(X) \) and \(C^{-1} \geq 0 \)) in some Banach space ordered by a special cone is guaranteed provided \(A \leq C \leq B \) and the operators \(A, B \) are positively invertible. Based on a result of J. Peris ([21]) in a former paper by the author ([27]) there was proved that a certain spectral property which should share all positive decompositions of an invertible operator acting in an appropriate ordered Banach space is a sufficient (and under some additional requirement on the operator also a necessary) condition for the operator to be positively invertible. This idea was used by T. Kurmayya and K. C. Sivakumar in [18] to establish the positivity of the Moore–Penrose inverses ([7], [14]) for operators in Hilbert lattices.

Another kind of decomposition of an operator, quite popular in the theory of positive matrices, is used by J. Peris and B. Subiza in [22] for the case of weak monotonicity of matrices (i.e., for all \(x \in \mathbb{R}^n \) such that \(Mx \geq 0 \) there exists \(y \in \mathbb{R}^n_+ \) satisfying \(My = Mx \)).

* e-mail: martin.weber@tu-dresden.de. Phone: +49 (0)351 463 35434, Fax: +49 (0)351 463 37202

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2 Preliminaries

Let \((X, X_+, \|\cdot\|)\) be an ordered normed space, where throughout the cone \(X_+\) is understood to be closed. Briefly we will write \(X\) instead of \((X, X_+, \|\cdot\|)\). In the vector space \(L(X, Y)\) of all linear continuous operators \(A: X \to Y\), where \(Y\) stands for the ordered normed space \((Y, Y_+, \|\cdot\|)\), the subset \(L_+(X, Y) = \{ A \in L(X, Y) : A(X_+) \subseteq Y_+ \}\) is, in general, a closed wedge and, under the assumption that the linear set \(X_+ - X_-\) is dense in \(X\), it is a cone in \(L(X, Y)\) (see [24]). If \(X = Y\) (this means also \(Y_+ = X_+\) and the identity of the norms) then \(L(X, X)\) is denoted by \(L(X)\) and \(L_+(X, Y)\) by \(L_+(X)\).

If \(Y = \mathbb{R}^1\) and \(Y_+ = \mathbb{R}^1_+\), then \(L_+(X, Y)\) is denoted by \(X_+\) and is called the dual wedge or cone, respectively.

Moreover, if the cones \(X_+\) and \(Y_+\) are both normal, \(\text{int}(Y_+) \neq \emptyset\) and \((Y, Y_+)\) is a Dedekind complete vector lattice then the wedge \(L_+(X, Y)\) is reproducing (or generating) ([3]–[5], [25]), i.e., any \(A \in L(X, Y)\) can be represented as the difference of two positive operators: \(A = U - V\), where \(U, V \in L_+(X, Y)\).

If \(A \in L(X, Y)\) is invertible then the continuity of \(A^{-1}\) follows either from Banach’s theorem (if \(X\) and \(Y\) are Banach spaces) or, if \(A^{-1} \geq 0\) is known, from continuity theorems for positive operators\(^\dagger\) (see [25], [1]).

For an operator \(A \in L(X)\) the spectrum is denoted by \(\sigma(A)\) and the spectral radius is defined as \(r(A) = \max \{|\lambda| : \lambda \in \sigma(A)\}\). The spectral radius of an invertible operator \(A\) is positive. Indeed, \(1 = r(I) \leq r(A)r(A^{-1})\) implies \(r(A) > 0\) and \(r(A^{-1}) > 0\). If an operator \(A\) is positively invertible then \(r(A^{-1}) \in \sigma(A^{-1})\) (see [17, Thm. 8.1]).

The next theorem provides some well-known conditions on an operator \(C\) in a Banach space \(X\) in order to guarantee the invertibility of the operator \(I - C\) in \(L(X)\).

Theorem 2.1 Let \(X\) be a Banach space and \(C: X \to X\) be a continuous linear operator on \(X\).

Consider the following properties:

- a) the spectral radius of \(C\) satisfies \(r(C) < 1\);
- b) \(C\) is quasinilpotent, i.e., \(\lim_{n \to \infty}\|C^n\| = 0\);
- c) there exists the inverse operator \((I - C)^{-1}\).

Then the following implications hold: (a) \(\implies\) (b) \(\implies\) (c).

Proof. a) \(\implies\) b). By the Gelfand formula and the assumption one has \(r(C) = \lim_{n \to \infty} \sqrt[n]{\|C^n\|} < 1\). For a fixed real number \(q\) such that \(r(C) < q < 1\) there exists a number \(n_0 \in \mathbb{N}\) such that for all \(n \geq n_0\) one has \(\sqrt[n]{\|C^n\|} < q\) and consequently \(\|C^n\| < q^n\). From \(q < 1\) there follows \(\|C^n\| \to 0\).

b) \(\implies\) c). For each \(n\) one has \((I - C)(I + C + C^2 + \cdots + C^n) = I - C^{n+1}\). If \(C^n \to 0\) then \((I - C)\sum_{n=0}^{\infty}C^n = I\) and

\[(I - C)^{-1} = I + C + C^2 + \cdots + C^n + \ldots\] (2.1)

This proves the theorem.

Corollary 2.2 Condition b) implies also the existence of the operator \((I + C)^{-1}\), where

\[(I + C)^{-1} = I - C + C^2 + \cdots + (-1)^nC^n + \ldots\] (2.2)

If \(X = (X, X_+, \|\cdot\|)\) is an ordered Banach space and the operator \(C\) is positive, i.e., \(C \in L_+(X)\), then the situation improves. Namely, it is easily seen from (2.1), that a) implies even \((I - C)^{-1} \geq 0\). If the operator \(C\) is nilpotent, i.e., \(C^k = 0\) for some \(k \in \mathbb{N}\), then \(I + C\) is invertible, where \((I + C)^{-1} = I - C + C^2 + \cdots + (-1)^{k-1}C^{k-1}\). Formula (2.2) shows that \((I + C)^{-1}\) is also positive, if the operator \(-C \geq 0\). Indeed, in this case \(C^{2n} \geq 0\) and \(-C^{2n-1} \geq 0\) for any \(n \in \mathbb{N}\). The implication c) \(\implies\) a) holds if the cone in the ordered Banach space has additional properties. Moreover, if the operator \(C\) is compact and satisfies \(r(C) > 0\) then the number \(r(C)\) turns out to be an eigenvalue of \(C\) possessing a positive eigenvector\(^\dagger\). More precisely one has (see [17, Thm. 9.2 and § 25]).

\(^\dagger\) If \(X\) is an ordered Banach space such that each positive linear functional on \(X\) is continuous and \(Y\) is an ordered Banach space with a closed cone then any linear positive operator \(A: X \to Y\) is continuous (Lozanovski’s Theorem). The condition for \(X\) holds e.g. if \(\text{int}(X_+) \neq \emptyset\) or if \(X_+\) is closed and reproducing. The norm-completeness of \(Y\) can be removed if the cone \(Y_+\) in the ordered normed space \(Y\) is assumed to be normal. Of course, in case of normed lattices the situation is much simpler: If \(X\) is a Banach lattice and \(Y\) any normed lattice then each positive operator is continuous.

\(^\dagger\) Such eigenvalues are called Perron–Frobenius-eigenvalues.

www.mn-journal.com © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Theorem 2.3 Let $(X,X_+,[\|\cdot\|])$ be an ordered Banach space and $C : X \to X$ a continuous linear operator on X such that $C \geq 0$.

(i) Then $r(C) < 1$ implies $(I - C)^{-1} \geq 0$ and, if the cone X_+ is normal and reproducing, also vice versa, i.e., the existence of $(I - C)^{-1}$ and $(I - C)^{-1} \geq 0$ imply $r(C) < 1$.

(ii) Let the cone X_+ satisfy the condition $X_+ - X_+ \subset X$. If C is compact, $r(C) > 0$ and $(I - C)^{-1} \geq 0$ then $r(C)$ is an eigenvalue of C possessing a positive eigenvector and $r(C) < 1$.

Proof. (i) If $r(C) < 1$ and $C \geq 0$ then by Theorem 2.1 the operator $(I - C)^{-1}$ exists and $(I - C)^{-1} \geq 0$ immediately follows from (2.1). The inverse statement is [17, Thm. 25.1].

(ii). The compactness of the positive operator C implies the existence of a positive eigenvector, so there exists a nonzero vector $x_0 \in X_+$ such that $Cx_0 = r(C)x_0$. If there would be $r(C) = 1$ then $(I - C)x_0 = 0$ contradicts the invertibility of $I - C$. Consequently, $r(C) \neq 1$ and $(I - C)x_0 = (1 - r(C))x_0$ implies $\frac{1}{1 - r(C)}x_0 = (I - C)^{-1}x_0$. Since $x_0 > 0$ and $(I - C)^{-1} \geq 0$ there must hold $r(C) < 1$.

Corollary 2.4 The operator $sl - C$ $(s > 0)$ is positively invertible if and only if $r(C) < s$.

Theorem 2.5 ([16, Thm. 1], [17, Thm. 25.4]). Let $X = (X,X_+,[\|\cdot\|])$ be an ordered Banach space with a normal cone X_+ that satisfies $\text{int}(X_+) \neq \emptyset$. Let $C,B : X \to X$ be two linear continuous operators, where $C \leq B$ and B is positively invertible. Then C is positively invertible if and only if $C(X_+) \cap \text{int}(X_+) \neq \emptyset$.

3 Decompositions and positive invertibility

In what follows $X = (X,X_+,[\|\cdot\|])$ will be an ordered normed space and $A \in L(X)$.

Definition 3.1 A decomposition $A = U - V$ of A is said to be positive, if $U \geq 0$, $V \geq 0$ (in this case the operator A is regular), positive regular, if it is positive, U^{-1} exists and $U^{-1} \geq 0$.

B-decomposition3, if it is positive and satisfies the conditions

a) there exists U^{-1};

b) $VU^{-1} \geq 0$;

c) $Ax \geq 0$, $Ux \geq 0$ imply $x \geq 0$.

The notion of a B-decomposition is a generalization (to the infinite-dimensional case) of a B-splitting introduced in [21] for square matrices.

If A is a positively invertible matrix then there might exist positive decompositions $A = U - V$ with the following properties:

a) there exists U^{-1} and V is not invertible or there exists V^{-1} and U is not invertible, even if $A \geq 0$ and $A^{-1} \geq 0$,

b) both U^{-1}, V^{-1} exist,

c) U, V are both not invertible.

Examples 3.2

a)

$A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$, \hspace{1cm} $A^{-1} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, \hspace{1cm} $U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, \hspace{1cm} $V = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$,

$A = \begin{pmatrix} 3 & -2 & 1 \\ -3 & 2 & 0 \\ 0 & 3 & -4 \end{pmatrix}$, \hspace{1cm} $A^{-1} = \begin{pmatrix} 8 & 5 & 2 \\ 9 & 9 & 9 \\ 4 & 4 & 1 \end{pmatrix}$, \hspace{1cm} $U = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 3 & 0 \end{pmatrix}$, \hspace{1cm} $V = \begin{pmatrix} 0 & 2 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

3 in [26] it is called JP-decomposition.
If $A = U_1 - V_1$, where
\[
U_1 = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 3 & 1 \end{pmatrix}, \quad V_1 = \begin{pmatrix} 0 & 2 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix},
\]
then there exist the matrices U_1^{-1} and V_1^{-1}.
\[
A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & 0 & 0 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 3 \\ 1 & 0 & 0 \end{pmatrix}, \quad V = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},
\]
b) \[
A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 1 & 0 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix}, \quad V = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix},
\]
c) \[
A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad U = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad V = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
\]
If $A = U_1 - V_1$, where
\[
U_1 = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 4 & 0 & 0 \end{pmatrix}, \quad V_1 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ 3 & 0 \end{pmatrix},
\]
then there exist the matrices U_1^{-1} and V_1^{-1}.

Remarks 3.3
1) If for a pair of ordered normed spaces $X = (X, X_+; \|\|)$ and $Y = (Y, Y_+; \|\|)$ with $Y_+ \neq Y$ the wedge $L_+(X, Y)$ is reproducing then each operator in $L(X, Y)$ has a positive decomposition. Moreover, in this case the cone X_+ is normal and the cone Y_+ is reproducing (see e.g. [3], [5], [25]). As was mentioned in § 2, if Y is a Dedekind complete vector lattice, then the normality of the cones X_+ and Y_+ and the condition $\text{int}(Y_+) \neq \emptyset$, for example, are sufficient conditions for the wedge $L_+(X, Y)$ to be reproducing.

2) If an operator A has a positive decomposition $A = U - V$ such that U^{-1} exists, then it can be represented as
\[
A = U - V = (I - VU^{-1})U, \quad \text{with} \quad U, V \geq 0. \tag{3.1}
\]

3) The existence of U^{-1} in a positive decomposition of A is also used for the solution of the equation $Ax = y$ by the iterative method $x^{(n+1)} = U^{-1}Vx^{(n)} + U^{-1}y$, which converges for an arbitrary starting vector $x^{(0)}$ provided the spectral radius of $U^{-1}V$ is less than 1.

4) If a decomposition of A is positive regular, then in (3.1) even the operators U^{-1} and VU^{-1} are positive. Therefore, any positive regular decomposition is a B-decomposition. The inverse is not true even for matrices (see [21]).

5) The condition $VU^{-1} \geq 0$ is equivalent to the implication $Ux \geq 0 \implies VX \geq 0$. Indeed, assume $VU^{-1} \geq 0$ and let for $x \in X$ be $Ux \geq 0$. Then $(VU^{-1})(Ux) = VX \geq 0$. On the other hand, let $Ux \geq 0$ imply $Vx \geq 0$. If now $x \in X$ then $(UU^{-1})x = x \geq 0$, i.e., with $y = U^{-1}x$ we have $Uy = x \geq 0$ and by assumption $Vy \geq 0$, that is $(VU^{-1})y = Vy \geq 0$.

6) If A decomposes as $A = \lambda I - V$, where $\lambda > 0$ and $V \geq 0$ then the decomposition is positively regular.

7) If $A = \lambda I - V$, $V \geq 0$, $\lambda > 0$ and $A^{-1} \geq 0$ then $\lambda I - V$ is a positive regular decomposition with $r(V) < \lambda$. Indeed, $A^{-1} \geq 0$ implies $(I - \frac{1}{\lambda} V)^{-1} \geq 0$, so by Theorem 2.3 (i) one has $r(I - \frac{1}{\lambda} V) < 1$.

www.mn-journal.com © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
8) Let $X = (X, X_+, |||)\] be an ordered Banach space with a normal cone X_+. Let $A \in L(X)$ be a positively invertible operator and $\alpha > 0$ a number which satisfies the condition $\alpha \cdot r(A^{-1}) < 1$. If $A \geq -\alpha I$ then A possesses a B-decomposition with $r(VU^{-1}) < 1$.

Proof of statement 8. Since $(\frac{1}{\alpha} A)^{-1} = \alpha A^{-1}$ and, by assumption $r(\alpha A^{-1}) < 1$, there exists the operator $(I - \alpha A^{-1})^{-1} \geq 0$ and

$$(I - \alpha A^{-1})^{-1} = I + \alpha A^{-1} + \alpha^2 A^{-2} + \alpha^3 A^{-3} + \ldots$$

Put $U = (I - \alpha A^{-1})^{-1} A$ and $V = \alpha A^{-1} U$. Then the assumptions imply that the operator

$$U = A + \alpha A + \alpha^2 A^2 + \alpha^3 A^3 + \ldots$$

is positive and also $V \geq 0$. There exists $U^{-1} = A^{-1}(I - \alpha A^{-1})$ and one has $VU^{-1} = \alpha A^{-1} \geq 0$ and $r(VU^{-1}) = \alpha \cdot r(A^{-1}) < 1$. Moreover,

$$U - V = U - \alpha A^{-1} U = (I - \alpha A^{-1}) U = (I - \alpha A^{-1})(I - \alpha A^{-1})^{-1} A = A.$$

This shows that $U - V$ is a B-decomposition of A. \square

Theorem 3.4 ([26, Thm. 3]) Let $X = (X, X_+, |||)$ be an ordered Banach space with a normal cone X_+ that satisfies the condition $\text{int}(X_+) \neq \emptyset$. Let $A : X \rightarrow X$ be a linear continuous operator. Consider the conditions

(i) A is positively invertible,

(ii) $X_+ \subset A(X_+),$

(iii) there exists some $x_0 \in X_+$ such that $Ax_0 \in \text{int}(X_+),

(iv) $r(VU^{-1}) < 1$ (if $A = U - V$ is a decomposition such that U^{-1} exists).

Then there hold the implications $(i) \Rightarrow (ii) \Rightarrow (iii).$

If A possesses a B-decomposition $A = U - V$ then $(iii) \Rightarrow (iv) \Rightarrow (i)$, i.e., in this case all conditions are equivalent.

Proof. (i) \Rightarrow (ii). $A^{-1} \geq 0$ means $A^{-1}(X_+) \subset X_+$ and so by applying A to the last inclusion one has $X_+ \subset A(X_+)$.

(ii) \Rightarrow (iii). If now $u \in \text{int}(X_+)$ then $u \in A(X_+)$, i.e., for some $x_0 \in X_+$ one has $Ax_0 = u \in \text{int}(X_+)$.

Let now $A = U - V$ be a B-decomposition of A. Denote the operator VU^{-1} by C. Then the condition b) of a B-decomposition implies $C \geq 0$ and according to (3.1) one has the representation $A = (I - C)U$.

(iii) \Rightarrow (iv). From $C \geq 0$ there follows the relation $I - C \leq I$. The positive invertibility of $I - C$ is then guaranteed by Theorem 2.5 if there exists a vector $z_0 \in X_+$ such that $(I - C)z_0 \in \text{int}(X_+)$. By assumption there is a vector $x_0 \in X_+$ with $Ax_0 \in \text{int}(X_+)$. Using (3.1) this yields $(I - C)Ux_0 \in \text{int}(X_+)$. Because $z_0 = Ux_0$ belongs to X_+, the cited theorem shows that $I - C$ is positively invertible and so, by Theorem 2.3(i), $r(C) < 1$.

(iv) \Rightarrow (i). The assumptions $r(C) < 1$ and $C \geq 0$ imply that the operator $I - C$ is positively invertible. Then A is invertible as well and from (3.1) there follows that $A^{-1} = U^{-1}(I - C)^{-1}$. We have to establish that $A^{-1} \geq 0$.

This will follow from the implication

$$x \in X, \ Ax \geq 0 \implies x \geq 0. \quad (3.2)$$

Indeed, if $x \geq 0$ then for $z = A^{-1} x$ one has $Az = x \geq 0$ and by the implication (3.2) we get $z \geq 0$ what proves $A^{-1} \geq 0$. For the remaining proof of (3.2) let $x \in X$ and $Ax \geq 0$. Then $(I - C)^{-1}(Ax) = (I - C)^{-1}(I - C)Ux \geq 0$, i.e., $Ux \geq 0$. Property c) of a B-decomposition implies now $x \geq 0$.

Remarks 3.5 9) If the operator A is invertible then (ii) is a sufficient condition for the positivity of its inverse. Indeed, apply A^{-1} to the inclusion (ii).

10) Only the proof of the implication (iv) \Rightarrow (i) requires the property c) of a B-decomposition.
11) Let \(X = (X, X_+, \| \cdot \|) \) be an ordered normed space with a closed normal cone \(X_+ \) and let \(Y = C(Q) \) be the space of all real continuous functions on some compact Hausdorff space \(Q \). If \(A : X \to Y \) is a linear continuous operator then there exist two positive linear continuous operators \(U, V : X \to Y \) such that \(A = U - V \) and
\[
(Ax)_+ \leq Ux \quad \text{and} \quad (Ax)_- \leq Vx \quad \text{for each} \quad x \in X.
\]

This is a part of the proof of [25, Thm. VI.3.2].

Further on we need the fact that the wedge \(L_+(X, Y) \) of all positive linear continuous operators between the ordered normed spaces \(X \) and \(Y \) possesses interior points. Necessary and sufficient conditions were given in [3] (see also [25, Thm. VI.5.1]).

Theorem 3.6 Let \((X, X_+, \| \cdot \|) \) and \((Y, Y_+, \| \cdot \|) \) be ordered normed spaces. For the wedge \(L_+(X, Y) \) to have nonempty interior it is necessary and sufficient that the cone \(X_+ \) allows plastering and the cone \(Y_+ \) has interior points.

If in this case \(f \) is a uniformly positive functional\(^4\) on \(X \) with the positive constant \(\delta \), i.e., \(\delta \|x\| \leq f(x) \) for all \(x \in X_+ \) and \(u \in Y_+ \) with \(B(u, \varepsilon) \subset Y_+ \) for some \(\varepsilon > 0 \), then the ball \(B(f \otimes u, \delta \varepsilon) \) belongs to \(L_+(X, Y) \) and consequently, the rank one operator \(f \otimes u \) is an interior point of \(L_+(X, Y) \). Since any interior point of the cone is an order unit (e.g. [24, Thm. II.1.1]), for any operator \(T \in L(X, Y) \) there is a number \(\lambda > 0 \) such that \(\pm T \leq \lambda(f \otimes u) \).

Now we prove our main result, namely the inverse statement of Theorem 3.4, that the positive invertibility of an operator implies the existence of a \(B \)-decomposition with condition (iv).

Theorem 3.7 Let \(X = (X, X_+, \| \cdot \|) \) be an ordered Banach space with a (closed) normal cone \(X_+ \) that satisfies the condition \(\text{int}(X_+) \neq \emptyset \) and allows plastering. If an operator \(A \in \mathcal{L}(X) \) is positively invertible then \(A \) possesses a \(B \)-decomposition \(A = U - V \) such that \(r(VU^{-1}) < 1 \).

Proof. We suppose that \(A^{-1} \) exists and fulfills \(A^{-1} \geq 0 \). If \(x \in X \) satisfies the condition \(Ax \geq 0 \) then \(A^{-1}(Ax) = x \geq 0 \), i.e., the condition c) of a \(B \)-decomposition in that case automatically holds (even without \(Ux \geq 0 \)).

If \(A \) possesses a \(B \)-decomposition \(A = U - V \) then \(r(VU^{-1}) < 1 \) holds by Theorem 3.4. Therefore it remains to establish the existence of a positive decomposition \(A = U - V \) with the properties a) there exists \(U^{-1} \) and b) \(VU^{-1} \geq 0 \).

This can be done in the following way: Let \(T \geq 0 \) be an arbitrary non-zero (positive) operator such that \(r(T) < 1 \). In this case the operator \((I - T)^{-1} \) exists and, according to Theorem 2.3(i), satisfies the condition \((I - T)^{-1} \geq 0 \). Put
\[
U = (I - T)^{-1}A \quad \text{and} \quad V = TU.
\]

Then there exists also the operator \(U^{-1} \), where \(U^{-1} = A^{-1}(I - T) \). The operator \(VU^{-1} \) is positive, because of \(VU^{-1} = TUU^{-1} = T \geq 0 \). Moreover,
\[
U - V = (I - T)^{-1}A - TU = (I - T)^{-1}A - T(I - T)^{-1}A = (I - T)(I - T)^{-1}A = A.
\]

If now \(U \geq 0 \) then also \(V \geq 0 \) holds, and \(U - V \) is the required \(B \)-decomposition of \(A \). Consequently, the only fact to be proved is that \(U \geq 0 \). We can do this if the operator \(T \) is constructed appropriately. Let \(u \) be a fixed interior point of the cone \(X_+ \) and \(f \) a uniformly positive functional on \(X \). It is clear that the operator \(f \otimes u \) is positive and \(f(A^{-1}u) > 0 \). It was already mentioned that the operator \(f \otimes u \) is an interior point of the wedge \(L_+(X) \). According to the remark after Theorem 3.6 there is some \(\lambda > 0 \) such that \(-A \leq \lambda(f \otimes u) \). Define for each \(\alpha > 0 \) the operator
\[
T_\alpha = \frac{1}{f(A^{-1}u) + \alpha} (f \otimes u) A^{-1}.
\] \(\tag{3.3} \)

Then \(T_\alpha \geq 0 \) and a simple calculation shows that \(T_\alpha^{n+1} = q^n T_\alpha \), where \(q = \frac{f(A^{-1}u)}{f(A^{-1}u) + \alpha} \) and
\[
r(T_\alpha) = \lim_{n \to \infty} \sqrt[n]{q^n \|T_\alpha\|} = q \lim_{n \to \infty} \sqrt[n]{\|T_\alpha\|} = q < 1 \quad \text{for all} \quad \alpha > 0.
\]

\(^4\) Such a functional exists due to the cone allows plastering, see [25].
So, due to \(r(T_\alpha) < 1 \) for all \(\alpha > 0 \) the operator \((I - T_\alpha)^{-1}\) exists and is positive. Therefore

\[
(I - T_\alpha)^{-1} = I + \sum_{n=0}^{\infty} q^n T_\alpha = I + \frac{f(A^{-1}u) + \alpha}{\alpha} T_\alpha.
\]

The operator \((I - T_\alpha)^{-1}A\) has now the representation

\[
(I - T_\alpha)^{-1}A = A + \frac{f(A^{-1}u) + \alpha}{\alpha} T_\alpha A = A + \frac{1}{\alpha} (f \otimes u).
\]

If \(\alpha \) satisfies the inequality \(\lambda \alpha \leq 1 \) then \((I - T_\alpha)^{-1}A \geq A + \lambda (f \otimes u) \geq 0\) and the operator \(U = (I - T_\alpha)^{-1}A \) is positive. This completes the proof according to the argument at the beginning of the proof. \(\square \)

Examples 3.8

1. For a square matrix \(A \) one obtains now the following result of J. E. Peris ([21, Theorem 5]), where the underlying space is \((\mathbb{R}^n, \mathbb{R}_+^n, \|\cdot\|)\) considered with an arbitrary norm.

 A square matrix \(A \) is positively invertible if and only if \(A \) allows a B-decomposition \(A = U - V \) with \(r(VU^{-1}) < 1 \).

 Proof. Due to Theorem 3.4 only the necessity has to be proved. If \(A = (a_{ij}) \) is an \(n \times n \)-matrix and \(u = f = (1, \ldots, 1) \) then \(u \) is an interior point of the cone \(\mathbb{R}_+^n \) and \(f \) is a uniformly positive functional\(^5\) on \(\mathbb{R}^n \) such that \(f(A^{-1}u) > 0 \). Then the operator \(T_\alpha \), defined in the proof of Theorem 3.7, is positive and satisfies \(r(T_\alpha) < 1 \). Some direct calculation yields

\[
(I - T_\alpha)^{-1}A = A + \frac{1}{\alpha} (f \otimes u),
\]

where \(f \otimes u \) is the matrix \(E = (e_{ij}) \) with \(e_{ij} = 1 \) for all \(i, j = 1, \ldots, n \). Again for sufficiently small \(\alpha \) the matrix \((I - T_\alpha)^{-1}A\) is positive and so the required decomposition can be constructed as the proof of the preceding theorem indicates. \(\square \)

2. For the real Banach space \(c_0 \) of all null sequences let

\[
E = \mathbb{R} \oplus c_0 = \left\{ \left(\xi \atop x \right) : \xi \in \mathbb{R}, x = (x_k)_{k \in \mathbb{N}} \in c_0 \right\}
\]

be its one-dimensional extension with the norm \(\| \left(\xi \atop x \right) \| = \sqrt{\xi^2 + \|x\|^2} \). A linear continuous operator \(B \) in \(E \) can be described as a matrix

\[
B = \begin{pmatrix} \eta & \phi \\ z & C \end{pmatrix},
\]

where \(\eta \in \mathbb{R}, z \in c_0, \phi \) is linear continuous functional on \(c_0 \) and \(C \) is a linear continuous operator in \(c_0 \) (see \([20]^6\)). The operator \(B \) acts on an element \(\left(\xi \atop x \right) \in E \) as

\[
B \left(\xi \atop x \right) = \left(\xi \eta + \phi(x) \atop \xi z + Cx \right).
\]

The subset in \(E \)

\[
E_+ = \left\{ \left(\xi \atop x \right) : \xi \geq \|x\| = \sup_{k \in \mathbb{N}} |x_k| \right\}
\]

\(^5\) due to \(\|x\| = (x_1^2 + \cdots + x_n^2)^{1/2} \leq x_1 + \cdots + x_n = f(x) \) for any \(x = (x_1, \ldots, x_n) \in \mathbb{R}_+^n \), if \(\|\cdot\| \) is the Euclidean norm.

\(^6\) The author thanks Prof. K. C. Sivakumar, IIT Madras (Chennai), for bringing this paper to his attention.
is known as the ice cream cone7 in E. E_+ is a closed normal cone with nonempty interior and a norm bounded base. The latter can be seen since $\xi \geq ||x||$ is equivalent to $\xi \geq \frac{1}{\gamma_2}\|\xi\|$. The linear continuous functional $f : E \to \mathbb{R}$ defined by $f(\xi) = \xi$ is uniformly positive and therefore E_+ allows plastering. Moreover, $||f|| = 1$.

For a slightly more general construction and for properties of ice cream cones we refer also to [2]. A linear operator B in E is positive with respect to the cone E_+, i.e., $B(E_+) \subset E_+$, if and only if

$$ \sup_{||x|| = 1} (||Cx + z|| - \phi(x)) \leq \eta $$

holds (see [20, Lemma 2]). There, in particular, it is shown that an operator B with

$$ z = (z_k)_{k \in \mathbb{N}} , \quad \phi = (-\phi_k)_{k \in \mathbb{N}} \in \ell_1 , \quad \eta = 1 + \sum_{k \in \mathbb{N}} \phi_k \quad \text{and} \quad C = \text{diag}(1 - z_k)_{k \in \mathbb{N}} $$

(3.4)

is positive, where $0 < z_k < 1$, $z_k \neq z_j$ for $k \neq j$, $\phi_k > 0$ and $\sum_{k \in \mathbb{N}} \frac{\phi_k}{z_k} = 1$ are assumed. We select $z = (z_k)_{k \in \mathbb{N}} \in c_0$ such that $\sum_{k \in \mathbb{N}} \frac{z_k}{1 - z_k} < +\infty$. Observe that the operator C is invertible on c_0.

If now

$$ B \left(\begin{array}{c} \xi \\ x \end{array} \right) = 0 \quad \text{for some} \quad \left(\begin{array}{c} \xi \\ x \end{array} \right) $$

then $\xi z + Cx = 0$ and $\xi \eta + \phi(x) = 0$. The first equality is equivalent to $\xi z_k + x_k - z_k x_k = 0$ for all $k \in \mathbb{N}$, what yields

$$ x_k = -\frac{z_k - \xi}{1 - z_k} . $$

(3.5)

Substitute x_k and η into the equality $\xi \eta + \phi(x) = 0$ one obtains

$$ 0 = \xi \eta - \sum_{k \in \mathbb{N}} \phi_k x_k = \left(1 + \sum_{k \in \mathbb{N}} \frac{\phi_k z_k}{1 - z_k} \right) \xi , $$

The convergence of the last series implies $\xi = 0$. Then due to (3.5) also $x_k = 0$ for all $k \in \mathbb{N}$. Consequently, $(\xi) = 0$ and so, B is invertible.

The inverse operator of B can be written as well as a matrix

$$ B^{-1} = \begin{pmatrix} \omega & \psi \\ u & S \end{pmatrix} $$

with $\omega \in \mathbb{R}$, $u \in c_0$, $\psi \in \ell_1$ and S a linear continuous operator on c_0. Then $BB^{-1} = B^{-1}B = I$ yield the following relations

\begin{align*}
(a) \quad \eta \omega + \phi(u) &= 1, & (a') \quad \eta \omega + \psi(z) &= 1, \\
(b) \quad \omega z + Cu &= 0, & (b') \quad \eta u + Sz &= 0, \\
(c) \quad \eta \psi + \phi \circ S &= 0, & (c') \quad \omega \phi + \psi \circ C &= 0, \\
(d) \quad \psi \otimes z + CS &= I_{c_0}, & (d') \quad \phi \otimes u + SC &= I_{c_0},
\end{align*}

where I_{c_0} is the identity operator in c_0. It is a routine to calculate now the elements in the representation of the operator B^{-1} when B is the operator with the data given in (3.3). Namely, we obtain

$$ \omega = \left(1 + ||\phi|| + \sum_{k = 1}^{\infty} \frac{\phi_k z_k}{1 - z_k} \right)^{-1} , \quad \psi = -\omega C^{-1} \phi , \quad u = -\omega C^{-1} z , \quad S = C^{-1} - \psi \otimes C^{-1} z. $$

7 in [20] this cone is called hyperbolic.
Consider now the operator \(A = B^{-1} \). Then \(A \) is a positively invertible operator in the ordered Banach space \(E \), where the cone \(E_+ \) satisfies all conditions of Theorem 3.7. Consequently, \(A \) has a \(B \)-decomposition \(A = U - V \) with \(r(VU^{-1}) < 1 \). The rank one operator \(f \otimes \left(\begin{array}{cc} 1 \\ 0 \end{array} \right) \) is an order unit in \(L_+(E) \) since \(\left(\begin{array}{cc} 1 \\ 0 \end{array} \right) \) is an inner point of the cone \(E_+ \) and \(f \) a uniformly positive functional on \(E \). There exists a number \(\lambda > 0 \) such that \(-\lambda \leq \lambda \left(f \otimes \left(\begin{array}{cc} 1 \\ 0 \end{array} \right) \right) \). Let be

\[
T = \frac{1}{\eta + \lambda} \left(f \otimes \left(\begin{array}{cc} 1 \\ 0 \end{array} \right) \right) A^{-1} = \frac{\lambda}{1 + \lambda \eta} \left(\begin{array}{cc} \eta & \phi \\ 0 & 0 \end{array} \right).
\]

Then \(T \geq 0 \) and, according to Theorem 3.7, the following decomposition of the operator \(A \) is established:

\[
A = U - V, \quad \text{where} \quad U = (I - T)^{-1}A = A + \lambda \left(f \otimes \left(\begin{array}{cc} 1 \\ 0 \end{array} \right) \right) \quad \text{and} \quad V = T(I - T)^{-1}A.
\]

More detailed, one calculates the very simple operators

\[
U = \left(\begin{array}{cc} \omega + \lambda & \psi \\ u & S \end{array} \right) \quad \text{and} \quad V = \left(\begin{array}{cc} \lambda & 0 \\ 0 & 0 \end{array} \right),
\]

showing also the apparent meaning of \(\lambda \) in the operator \(V \). This, of course, is caused by the simple structure of the interior point \(f \otimes \left(\begin{array}{cc} 1 \\ 0 \end{array} \right) \) in \(L_+(E) \).

Remarks 3.9

11) The decomposition of an operator can be reformulated in terms of its majorization (see [19]). Then the existence of a \(B \)-decomposition for an operator \(A \) in an ordered normed space is equivalent to the existence of an invertible majorant \(U \) such that \(I - AU^{-1} \) is a positive operator with the spectral radius less than 1.

12) The question formulated in [27] is answered confirmatively, i.e., under the conditions of Theorem 3.7 all statements of Theorem 3.4 hold, in particular, each invertible operator \(A \) possesses a \(B \)-decomposition \(A = U - V \) with \(r(VU^{-1}) < 1 \).

13) The proof of Theorem 3.7 shows that namely the operators \(U = A + \frac{1}{\alpha} (f \otimes u) \) and \(V = \frac{1}{\alpha} (f \otimes u) \) form a \(B \)-decomposition of \(A \). Their construction essentially uses the order unit \(f \otimes u \) in \(L_+(E) \). In Example 2. for \(\frac{1}{\alpha} \) was taken the number \(\lambda \).

14) An open question is, whether a positively invertible operator in an ordered Banach space \(E \) can have a \(B \)-decomposition, when \(L_+(E) \) does not possess any order unit, in particular, if the condition \(\text{int}(X) \neq \emptyset \) fails in Theorem 3.7 or is replaced by another one.

References