Finite Degree Clones Are Undecidable

Matthew Moore

The University of Kansas
Department of Electrical Engineering and Computer Science

June 22, 2019
Finite Degree Clones Are Undecidable

1. Clones and The Finite Degree Problem
2. The Encoding of Computation
3. Non-halting Implies Infinite Degree
4. Halting Implies Finite Degree
5. Conclusion and Open Problems
Finite Degree Clones Are Undecidable

1. Clones and The Finite Degree Problem
2. The Encoding of Computation
3. Non-halting Implies Infinite Degree
4. Halting Implies Finite Degree
5. Conclusion and Open Problems
A clone is a set of finitary operations closed under
- composition,
- variable identification,
- variable permutation,
- introduction of extraneous variables.

Emil Post in 1941 famously classified all Boolean clones.

Over (≥ 3)-element domains structure is quite complicated.
Clones are infinite. How can they be an input to an algorithm?

A clone on finite domain A can be **finitely specified** in essentially 2 ways.

First way: Given \mathcal{F}, a finite set of operations of A, define $\text{Clo}(\mathcal{F}) = \text{“the smallest clone containing } \mathcal{F} \text{”}$.

- A with \mathcal{F} forms an algebra, $\mathbb{A} = \langle A; \mathcal{F} \rangle$. Define $\text{Clo}(\mathbb{A}) = \text{Clo}(\mathcal{F})$.
- A relation of \mathbb{A} is a subpower $R \subseteq A^n$ closed under \mathcal{F} (hence $\text{Clo}(\mathcal{F})$)
- Define $\text{Rel}_n(\mathbb{A}) = \text{Rel}_n(\mathcal{F}) = \text{“all } (\leq n)\text{-ary relations of } \mathbb{A} \text{”}$.
- Define $\text{Rel}(\mathbb{A}) = \text{Rel}_n(\mathcal{F}) = \bigcup_{n<\infty} \text{Rel}_n(\mathbb{A})$

These are the **finitely generated** clones.

Second way: Given \mathcal{R}, a finite set of subpowers of A, define $\text{Pol}(\mathcal{R}) = \text{“the set of all operations of } A \text{ preserving all subpowers in } \mathcal{R} \text{”}$.

These are the **finitely related/finite degree** clones.
Rel(\mathcal{F}) = \{ R \subseteq A^n \mid R \text{ is preserved by all operations in } \mathcal{F} \}

\text{Pol}(\mathcal{R}) = \{ f : A^n \to A \mid f \text{ preserves all subpowers in } \mathcal{R} \}

These two operators form a \textbf{Galois connection}.

\begin{align*}
\mathcal{R} \subseteq \text{Rel}(\mathcal{F}) \\
\iff \mathcal{F} \subseteq \text{Pol}(\mathcal{R})
\end{align*}

Every Galois connection defines two closure operators. Here, they are

\[\text{Clo} = \text{Pol} \circ \text{Rel} \quad \text{and} \quad \text{RClo} = \text{Rel} \circ \text{Pol}. \]

If \(\mathcal{R} \in \text{RClo}(\mathcal{S}) \), then we say "\(\mathcal{S} \) entails \(\mathcal{R} \)" and write \(\mathcal{S} \models \mathcal{R} \).

If \(f \in \text{Pol}(\mathcal{S}) \), then we say "\(\mathcal{S} \) entails \(f \)" and write \(\mathcal{S} \models f \).
For a set of relations \(S \), define

\[
\text{deg}(S) = \sup \{ \text{arity}(R) \mid R \in S \}.
\]

For a clone \(C \), define

\[
\text{deg}(C) = \inf \{ \text{deg}(S) \mid \text{Pol}(S) = C \}.
\]

For an algebra \(A \), define

\[
\text{deg}(A) = \text{deg}(\text{Clo}(A)).
\]

The Finite Degree Problem

Input: finite algebra \(A = \langle A; f_1, \ldots, f_n \rangle \) generating clone \(C \)

Output: whether \(\text{deg}(C) < \infty \)

(seems to originate in the 70s with the study of lattices of clones over domains of more than 2 elements)
The Finite Degree Problem

Input: finite algebra $\mathbb{A} = \langle A; f_1, \ldots, f_n \rangle$ generating clone C

Output: whether $\text{deg}(C) < \infty$

Given a Minsky machine M, we encode it into a finite algebra $\mathbb{A}(M)$.

Theorem

The following are equivalent.

- M halts,
- $\text{deg}(\mathbb{A}(M)) < \infty$ (i.e. $\mathbb{A}(M)$ is finitely related),

Similar approaches have proved the following are undecidable:

- finite residual bound (McKenzie)
- finite axiomatizability/Tarski’s problem (McKenzie)
- certain omitting types (McKenzie, Wood)
- existence of a term op. that is NU on all but 2 elements (Maroti)
- DPSC, leading to another solution to Tarski’s problem (M)
- profiniteness (Nurakunov and Stronkowski)
Clones and The Finite Degree Problem

The Encoding of Computation

Non-halting Implies Infinite Degree

Halting Implies Finite Degree

Conclusion and Open Problems
A Minsky machine has

- registers A and B that have integer values ≥ 0,

- instructions to add 1 to a register,

- instructions to test if a register is 0 and otherwise subtract 1 from it.

We can represent a Minsky machine as a finite flow graph.
How to represent intermediate computations?

- Assign a state to each node.
- A configuration \((i, \alpha, \beta)\) represents each stage of computation.
- Consider \(\mathcal{M}\) as a function, and write
 \[
 \mathcal{M}(i, \alpha, \beta) = (j, \alpha', \beta') \quad \text{or} \quad \mathcal{M}^n(i, \alpha, \beta) = (j, \alpha', \beta')
 \]
 (single step of computation or multiple).
- On \((\alpha, \beta)\), \(\mathcal{M}\) halts with registers \((1, 0)\) if \(\alpha \leq \beta\) and \((0, 1)\) otherwise.
The encoding of computation

- let $\mathbb{A}(\mathcal{M})$ be the algebra we intend to build
- configurations $(i, \alpha, \beta) \leftrightarrow$ special elements of $A(\mathcal{M})^n$
- term operations should simulate the action of \mathcal{M} (need placemaker, •)
- computation on configurations \leftrightarrow subalgebra generation

$\mathbb{A}(\mathcal{M})$ has universe... $A(\mathcal{M}) = \{ \langle i, c \rangle \mid i \text{ a state of } \mathcal{M}, \ c \in \{A, B, 0, \bullet, \times\} \}$

Given configuration (k, α, β) and $n \in \mathbb{N}$ define a subset of $\mathbb{A}(\mathcal{M})^n$,

$$\text{conf}(k, \alpha, \beta) = \bigcup_{p \in P_n} \left\{ p\left(\underbrace{\langle k, A \rangle, \ldots, \langle k, A \rangle}_\alpha, \underbrace{\langle k, B \rangle, \ldots, \langle k, B \rangle}_\beta, \langle k, 0 \rangle, \ldots, \langle k, 0 \rangle, \langle k, \bullet \rangle\right) \right\}_{n-\alpha-\beta-1}.$$
The encoding of computation

- term operations should simulate the action of M
- computation on configurations \iff subalgebra generation

Design considerations

- $M(r, s) = t$ if and only if...
 - $r, s \in \text{conf}(i, \alpha, \beta)$
 - $r \neq s$
 - $t \in \text{conf}(M(i, \alpha, \beta))$
 - via some R_+ or R_-

- otherwise introduce \times into the output t

Term operations

- $M(x, y)$ for R_+ or R_-
- $M'(x)$ for R_- \rightarrow

- $M'(r) = t$ if and only if...
 - $r \in \text{conf}(i, \alpha, \beta)$
 - $t \in \text{conf}(M(i, \alpha, \beta))$
 - via some R_- \rightarrow

- otherwise introduce \times into the output t
Can we actually define M and M' with these features?

\[
M(x, y) = \begin{cases}
\langle j, R \rangle & \text{if } x = \langle i, \bullet \rangle, \ y = \langle i, 0 \rangle, \quad i : R^+ \rightarrow j : *, \\
\langle j, 0 \rangle & \text{if } x = \langle i, \bullet \rangle, \ y = \langle i, R \rangle, \quad i : R^- \rightarrow j : *, \\
\langle j, \bullet \rangle & \text{if } x = \langle i, 0 \rangle, \ y = \langle i, \bullet \rangle, \quad i : R^+ \rightarrow j : *, \\
\langle j, \bullet \rangle & \text{if } x = \langle i, R \rangle, \ y = \langle i, \bullet \rangle, \quad i : R^- \rightarrow j : *, \\
\langle j, c \rangle & \text{if } x = y = \langle i, c \rangle, \ c \neq \bullet, \quad i : R^+ \rightarrow j : * \quad \text{or} \quad i : R^- \rightarrow j : *, \\
\langle j, \times \rangle & \text{else if } x = \langle i, c \rangle, \ y = \langle i, d \rangle, \quad i : R^+ \rightarrow j : * \quad \text{or} \quad i : R^- \rightarrow j : *, \\
\langle i, \times \rangle & \text{otherwise, where } y = \langle i, c \rangle.
\end{cases}
\]

\[
M'(x) = \begin{cases}
\langle k, c \rangle & \text{if } x = \langle i, c \rangle, \quad i : R^+ \xrightarrow{0} k : *, \ c \neq R, \\
\langle k, \times \rangle & \text{else if } x = \langle i, R \rangle, \quad i : R^+ \xrightarrow{0} k : *, \\
\langle i, \times \rangle & \text{otherwise, where } x = \langle i, c \rangle.
\end{cases}
\]

Let’s see an example computation...
\[
\begin{align*}
1: & \quad M \begin{pmatrix}
\langle 1, \bullet \rangle, \langle 1, A \rangle \\
\langle 1, A \rangle, \langle 1, \bullet \rangle \\
\langle 1, A \rangle, \langle 1, A \rangle \\
\langle 1, B \rangle, \langle 1, B \rangle
\end{pmatrix} = \begin{pmatrix}
\langle 4, 0 \rangle \\
\langle 4, \bullet \rangle \\
\langle 4, A \rangle \\
\langle 4, B \rangle
\end{pmatrix} \\
2: & \quad M \begin{pmatrix}
\langle 4, 0 \rangle, \langle 4, 0 \rangle \\
\langle 4, \bullet \rangle, \langle 4, B \rangle \\
\langle 4, A \rangle, \langle 4, A \rangle \\
\langle 4, B \rangle, \langle 4, \bullet \rangle
\end{pmatrix} = \begin{pmatrix}
\langle 1, 0 \rangle \\
\langle 1, 0 \rangle \\
\langle 1, A \rangle \\
\langle 1, \bullet \rangle
\end{pmatrix} \\
3: & \quad M \begin{pmatrix}
\langle 1, 0 \rangle, \langle 1, 0 \rangle \\
\langle 1, 0 \rangle, \langle 1, 0 \rangle \\
\langle 1, A \rangle, \langle 1, \bullet \rangle \\
\langle 1, \bullet \rangle, \langle 1, A \rangle
\end{pmatrix} = \begin{pmatrix}
\langle 4, 0 \rangle \\
\langle 4, 0 \rangle \\
\langle 4, \bullet \rangle \\
\langle 4, 0 \rangle
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
4: & \quad M' \begin{pmatrix}
\langle 4, 0 \rangle \\
\langle 4, 0 \rangle
\end{pmatrix} = \begin{pmatrix}
\langle 5, 0 \rangle \\
\langle 5, 0 \rangle
\end{pmatrix} \\
5: & \quad M' \begin{pmatrix}
\langle 5, 0 \rangle \\
\langle 5, 0 \rangle \\
\langle 5, \bullet \rangle \\
\langle 5, 0 \rangle
\end{pmatrix} = \begin{pmatrix}
\langle 6, 0 \rangle \\
\langle 6, 0 \rangle \\
\langle 6, \bullet \rangle \\
\langle 6, 0 \rangle
\end{pmatrix} \\
6: & \quad M \begin{pmatrix}
\langle 6, 0 \rangle, \langle 6, 0 \rangle \\
\langle 6, 0 \rangle, \langle 6, 0 \rangle \\
\langle 6, \bullet \rangle, \langle 6, 0 \rangle \\
\langle 6, 0 \rangle, \langle 6, 0 \rangle
\end{pmatrix} = \begin{pmatrix}
\langle 0, 0 \rangle \\
\langle 0, 0 \rangle \\
\langle 0, B \rangle \\
\langle 0, 0 \rangle
\end{pmatrix}.
\]

Matthew Moore (KU) Finite Degree Clones Are Undecidable 2019-06-22 15/32
Takeaways on a relation \(R \leq A(\mathcal{M})^n \) ...

- certain elements of \(R \) encode configurations of \(\mathcal{M} \),
- \(\mathcal{M} \) and \(\mathcal{M}' \) encode the action of \(\mathcal{M} \) in the presence of these elements.

\[
\text{conf}(k, \alpha, \beta) = \bigcup_{p \in P_n} \left\{ p\left(\langle k, A \rangle, \ldots, \langle k, A \rangle, \langle k, B \rangle, \ldots, \langle k, B \rangle, \langle k, 0 \rangle, \ldots, \langle k, 0 \rangle, \langle k, \bullet \rangle \right) \right\}
\]

Questions

- What if \(R \) doesn’t contain these kinds of elements?
- What if \(R \) contains elements that aren’t “computational”? (multiple \(\bullet \)’s or non-constant states)

Call \(R \) **computational** if it doesn’t contain any elements with 2 \(\bullet \)’s or non-constant state.

The **capacity** of a computation \(\mathcal{M}^k(i, \alpha, \beta) = (j, \alpha', \beta') \) is the max sum of the registers.

The **capacity** of computational \(R \) is (number of coordinates with \(\bullet \))−1.
We consider the halting problem on \textbf{0 register input}: $\text{config} = (1, 0, 0)$. Let $S_m = Sg_{\mathcal{A}(\mathcal{M})^m}(\text{conf}(1, 0, 0))$.

\begin{description}
\item[Theorem (The Coding Theorem)] The following are equivalent.
\begin{itemize}
 \item $\mathcal{M}^n(1, 0, 0) = (k, \alpha, \beta)$ with capacity $< m$,
 \item $\text{conf}(k, \alpha, \beta) \subseteq S_m$.
\end{itemize}
\end{description}

\begin{description}
\item[Corollary] The following are equivalent.
\begin{itemize}
 \item \mathcal{M} halts with capacity $< m$,
 \item S_m is halting (i.e. contains $\text{conf}(0, \alpha, \beta)$),
 \item every computational $\mathcal{R} \leq \mathcal{A}(\mathcal{M})^\ell$ with capacity $\geq m$ is halting.
\end{itemize}
\end{description}
Theorem (The Coding Theorem)

The following are equivalent.

• \(M^n(1, 0, 0) = (k, \alpha, \beta) \) with capacity \(< m\),

• \(\text{conf}(k, \alpha, \beta) \subseteq S_m \).

Framework for proving the hardness of algebraic properties

• Start out with \(\mathbb{A}(M) = \langle A(M) \ ; \ M, M' \rangle \).

• Add operations so that the property is recognizable in \(\text{Rel}(\mathbb{A}(M)) \)
 (ideally in the \((S_m)_{m \in \mathbb{N}} \)).

• Use a computer to verify necessary computations.

• Use software development techniques:
 write unit tests, rapidly iterate the operation definitions.

This allows us to give a more unified construction for the previously
mentioned undecidability results in Universal Algebra.
Finite Degree Clones Are Undecidable

1. Clones and The Finite Degree Problem
2. The Encoding of Computation
3. Non-halting Implies Infinite Degree
4. Halting Implies Finite Degree
5. Conclusion and Open Problems
Observe

\[
\text{deg}(C) = \infty \quad \text{if and only if} \quad \forall n \ Rel_n(C) \not\models Rel(C)
\]

\[
\text{if and only if} \quad \forall n \ \exists R \ Rel_n(C) \not\models R
\]

Idea: to show that \(\text{deg}(\mathbb{A}(\mathcal{M})) = \infty\) when \(\mathcal{M}\) does not halt, we show the last equivalence holds for \(C = \text{Clo}(\mathbb{A}(\mathcal{M}))\).

Two operations involved

- semilattice operation \(\land\)
 - locally flat: \(a \land b \neq \langle \ast, \times \rangle\) iff \(a = b\)

- “initialization” operation \(I(x, y)\)
 - returns any configuration to \(\text{conf}(1, 0, 0)\)

At this point \(\mathbb{A}(\mathcal{M}) = \langle A(\mathcal{M}) ; M, M', \land, I \rangle\).
Rel\(_n(C) \models R\) if and only if \(R\) can be built from Rel\(_n(C)\) using
- intersection of equal arity relations,
- (cartesian) product of finitely many relations,
- permutation of the coordinates of a relation, and
- projection of a relation onto a subset of coordinates.

\textbf{Theorem (Zadori 1995)}

\(\text{Rel}_n(A) \models S\) if and only if

\[S = \pi \left(\bigcap_{i \in I} \mu_i \left(\prod_{j \in J_i} R_{ij} \right) \right) \]

for some \(R_{ij} \in \text{Rel}_n(A)\), some coordinate projection \(\pi\), and some coordinate permutations \(\mu_i\).
Lemma

Suppose that

$$\text{conf}(1, 0, 0) \subseteq \pi \left(\bigcap_{i \in I} \mu_i \left(\prod_{j \in J_i} R_{ij} \right) \right) = S \leq A(\mathcal{M})^m,$$

where π is a projection, the μ_i are permutations, and the R_{ij} are a finite collection of members of $\text{Rel}_n(A(\mathcal{M}))$, and $n < m$. Then S is halting.

Theorem

The following hold for any Minsky machine \mathcal{M}.

- If \mathcal{M} does not halt with capacity m then $m < \deg(A(\mathcal{M}))$.
- If \mathcal{M} does not halt then $A(\mathcal{M})$ is not finitely related.

Proof: Suppose that $\deg(A(\mathcal{M})) \leq m$. This implies in particular that $\text{Rel}_m(A(\mathcal{M})) \models S_{m+1}$. By Zadori’s theorem, S_{m+1} can be represented as in the Lemma above, so by that same Lemma it is halting. By the Coding Theorem, this implies that \mathcal{M} halts with capacity m, a contradiction.
Finite Degree Clones Are Undecidable

1. Clones and The Finite Degree Problem
2. The Encoding of Computation
3. Non-halting Implies Infinite Degree
4. Halting Implies Finite Degree
5. Conclusion and Open Problems
Strategy

- The relations S_m witnessed non-entailment when M did not halt. When M does halt, these relations eventually witness the halting.

- Show that for some suitably chosen k, we have $\text{Rel}_k(A(M)) \models \text{Rel}_n(A(M))$ for all n.

- We proceed by induction on n.

- The base case of $n = k$ is trivial.

- We thus endeavor to prove $\text{Rel}_{n-1}(A(M)) \models R$ for $R \in \text{Rel}_n(A(M))$.

- Relations in $\text{Rel}_n(A(M))$ can be divided into 4 different kinds, so we proceed by cases.

- We add operations to handle entailment in each of the different cases: $N_\bullet(w, x, y, z)$, $P(u, v, x, y)$, $H(x, y)$, $N_0(x, y, z)$, $S(x, y, z)$.

- $A(M) = \langle A(M) ; M, M', \land, I, N_\bullet, P, H, N_0, S \rangle$ (final version)
\[\mathbb{A}(\mathcal{M}) = \langle A(\mathcal{M}) ; M, M', \land, I, N_\bullet, P, H, N_0, S \rangle \]

Case \(R \) is non-computational

- There is an element with 2 \(\bullet \)'s or with non-constant state.
- 2 \(\bullet \)'s: operation \(N_\bullet \) handles entailment.
- Non-constant state: operation \(P \) handles entailment.

Theorem

If \(m \geq 3 \) and \(R \leq \mathbb{A}(\mathcal{M})^m \) is non-computational then \(\text{Rel}_{m-1}(\mathbb{A}(\mathcal{M})) \models R \).

Case \(R \) is halting

- \(R \) contains an element of \(\text{conf}(0,0,0) \).
- Any element of \(\text{conf}(0,0,0) \) can be used with operations \(I, H \), and \(N_0 \) to prove entailment.

Theorem

If \(3 \leq m \) and \(R \leq \mathbb{A}(\mathcal{M})^m \) is halting then \(\text{Rel}_{m-1}(\mathbb{A}(\mathcal{M})) \models R \).
We are left to examine computational non-halting $\mathbb{R} \leq \mathbb{A}(\mathcal{M})^n$.

Let’s say that \mathcal{M} halts with capacity κ.

Two metrics (both subsets of $[n]$)

- $\mathcal{D}(\mathbb{R}) =$ “coordinates i such that $\exists r \in R$ with $r(i) = \langle j, \bullet \rangle$”

 = “the \bullet (dot) part of \mathbb{R}.”

- $\mathcal{N}(\mathbb{R}) =$ “the inherently non-halting part of \mathbb{R}” ...

 - $\pi_{\mathcal{N}(\mathbb{R})}(\mathbb{R})$ is non-halting,

 - if $K = |\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})|$ then $\mathbb{S}_K \leq \mathbb{R}$.

Case \mathbb{R} is computational and $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| > \kappa$

- $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| > \kappa$ then \mathbb{R} contains a halting subalgebra.

- it follows that \mathbb{R} halts!

We thus consider computational non-halting \mathbb{R} with $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| \leq \kappa$. ·
Case computational non-halting \mathbb{R} with $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| \leq \kappa$

Theorem

Assume that $n \geq \kappa + 16$ and

- $\mathbb{R} \leq A(\mathcal{M})^n$ is computational non-halting,
- $|\mathcal{N}(\mathbb{R}) \cap \mathcal{D}(\mathbb{R})| \leq \kappa$,
- \vdots (several technical hypotheses)

Then $\text{Rel}_{n-1}(A(\mathcal{M})) \models \mathbb{R}$.

This completes the case analysis!

Theorem

If \mathcal{M} halts with capacity κ then $\deg(A(\mathcal{M})) \leq \kappa + 16$.

·
Clones and The Finite Degree Problem

The Encoding of Computation

Non-halting Implies Infinite Degree

Halting Implies Finite Degree

Conclusion and Open Problems
Theorem

The following are equivalent.

• M halts,
• $\deg(A(M)) < \infty$ (i.e. $A(M)$ is finitely related),
• M halts with capacity at least $\deg(A(M)) - 16$.

Interesting observations

• There are infinitely many M with halting status independent of ZFC.
• There are infinitely many M such that $\deg(A(M)) < \infty$ is independent of ZFC.
• There are finite algebras A that whose finite-relatedness is independent of ZFC.
• $\maxdeg_\sigma(n) = \sup \left\{ \deg(A) \mid A \text{ has signature } \sigma, \deg(A) < \infty, \text{ and } |A| \leq n \right\}$ is not computable.
Finite Generation Problems

Problem
Given relations \mathcal{R}, decide if $\mathcal{C} = \text{Pol}(\mathcal{R})$ is finitely generated. That is, decide whether $\mathcal{C} = \text{Clo}(\mathcal{F})$ for some finite set of operations \mathcal{F}.

Problem
Given relations \mathcal{R} and operations \mathcal{F}, decide whether $\text{Pol}(\mathcal{R}) = \text{Clo}(\mathcal{F})$.
We can modify the definition of $\text{deg}(\cdot)$ to obtain a duality degree: $\text{deg}_\partial(\cdot)$.

Problem (Finite Duality Degree)

Decide whether $\text{deg}_\partial(\mathbb{A}) < \infty$ for finite \mathbb{A}.

Duality entailment implies usual entailment, so we already have that $\mathbb{A} (\mathcal{M})$ is not finitely duality related when \mathcal{M} does not halt.

Problem

If \mathcal{M} halts, is $\text{deg}_\partial(\mathbb{A} (\mathcal{M})) < \infty$?

Problem

Given finite \mathbb{A}, decide whether \mathbb{A} admits a duality.
The following are equivalent.

- \mathcal{M} halts,
- $\deg(\mathbb{A}(\mathcal{M})) < \infty$ (i.e. $\mathbb{A}(\mathcal{M})$ is finitely related),
- \mathcal{M} halts with capacity at least $\deg(\mathbb{A}(\mathcal{M})) - 16$.

Thank you for your attention.