Problem 1
Recall the definition of the full product $A \mathbin{\hat{\boxtimes}} B$ for relational structures A and B with disjoint relational structures: it always contains the relations $\{(a_1, b_1), (a_2, b_2) \mid a_1 = a_2\}$ and $\{(a_1, b_1), (a_2, b_2) \mid b_1 = b_2\}$. Show that without these relations, $\text{Aut}(A \mathbin{\hat{\boxtimes}} B)$ is in general not isomorphic to $\text{Aut}(A) \mathbin{\hat{\boxtimes}} \text{Aut}(B)$ (give counterexamples!).

Problem 2
The finitary alternating group A on \mathbb{N} is the set of all permutations of \mathbb{N} that can be written as a composition of an even number of transpositions. Show that A is a normal subgroup of $\text{Sym}(\mathbb{N})$. What is the cardinality of A?

Problem 3
Let G be a permutation group on a set X. Let $F(n)$ be the number of orbits for the componentwise action on n-tuples with pairwise distinct entries. Prove that

$$F(n) \leq F(n + 1)$$

Problem 4
Show that a permutation group G on a set A is highly transitive if and only if $\overline{G} = \text{Sym}(A) = \text{Aut}(A;=)$.