Contents

- Preface

Chapter 1. Graphs
- 1.1. Connectivity
- 1.2. Colorability
- 1.3. Trees
- 1.4. Matchings
- 1.5. Applications

Chapter 2. Duality
- 2.1. Duality in Linear Algebra
- 2.2. Weighted Matchings
 - 2.2.1. Maximum matching as an integer linear program
 - 2.2.2. A relaxation
- 2.3. The Duality Theorem
 - 2.3.1. Example first
 - 2.3.2. The dual linear program in general
 - 2.3.3. Optimality via feasibility
 - 2.3.4. Fourier-Motzkin elimination
 - 2.3.5. The Farkas lemma
 - 2.3.6. Proving the duality theorem
- 2.4. Applications
 - 2.4.1. Flows in networks
 - 2.4.2. The easychair problem
 - 2.4.3. Von Neumann minimax theorem
 - 2.4.4. Simple stochastic games

Chapter 3. The Probabilistic Method
- 3.1. Tournaments
- 3.2. Asymptotic Growth
 - 3.2.1. O-Notation
- 3.3. Random Graphs
 - 3.3.1. Introducing random graphs
 - 3.3.2. The Erdős-Rényi evolution
 - 3.3.3. The first moment method
 - 3.3.4. The second moment method
 - 3.3.5. The void
 - 3.3.6. The k-th day
 - 3.3.7. Day ω
 - 3.3.8. The double jump
 - 3.3.9. Past the double jump

- Preface 7
- Chapter 1. Graphs 1
- 1.1. Connectivity 2
- 1.2. Colorability 2
- 1.3. Trees 3
- 1.4. Matchings 4
- 1.5. Applications 5
- Chapter 2. Duality 9
- 2.1. Duality in Linear Algebra 9
- 2.2. Weighted Matchings 10
 - 2.2.1. Maximum matching as an integer linear program 10
 - 2.2.2. A relaxation 10
- 2.3. The Duality Theorem 12
 - 2.3.1. Example first 12
 - 2.3.2. The dual linear program in general 13
 - 2.3.3. Optimality via feasibility 14
 - 2.3.4. Fourier-Motzkin elimination 14
 - 2.3.5. The Farkas lemma 15
 - 2.3.6. Proving the duality theorem 16
- 2.4. Applications 17
 - 2.4.1. Flows in networks 17
 - 2.4.2. The easychair problem 19
 - 2.4.3. Von Neumann minimax theorem 19
 - 2.4.4. Simple stochastic games 22
- Chapter 3. The Probabilistic Method 25
 - 3.1. Tournaments 25
 - 3.2. Asymptotic Growth 26
 - 3.2.1. O-Notation 26
 - 3.3. Random Graphs 28
 - 3.3.1. Introducing random graphs 28
 - 3.3.2. The Erdős-Rényi evolution 29
 - 3.3.3. The first moment method 30
 - 3.3.4. The second moment method 30
 - 3.3.5. The void 32
 - 3.3.6. The k-th day 32
 - 3.3.7. Day ω 33
 - 3.3.8. The double jump 33
 - 3.3.9. Past the double jump 33
3.3.10. Beyond connectivity
3.3.11. Powers of n
3.4. High Girth and High Chromatic Number

Chapter 4. Ramsey Theory
4.1. The Pigeonhole Principle
4.2. König’s Tree Lemma
4.3. Ramsey’s Theorem
4.4. A Probabilistic Lower Bound
4.5. Applications
4.5.1. Number Theory
4.5.2. Geometry
4.6. The Theorem of Hales-Jewett
4.6.1. Positional Games
4.6.2. The Hales-Jewett Theorem
4.6.3. Application: van der Waerden’s theorem
4.6.4. Application: monochromatic copies of graphs

Chapter 5. Generating Functions
5.1. Motivating Generating Functions
5.2. The Idea
5.3. Formal Power Series
5.3.1. Defining power series
5.3.2. The reciprocal power series
5.3.3. The derived power series
5.3.4. Composing power series
5.3.5. The partial fraction decomposition
5.3.6. The Fibonacci numbers
5.4. Regular Languages
5.4.1. Deterministic finite automata
5.4.2. Regular expressions
5.4.3. The generating function of a regular language
5.5. Analytic Combinatorics
5.5.1. From formal power series to functions
5.5.2. From functions to power series: Taylor expansion
5.6. The Catalan Numbers
5.6.1. A recursion formula
5.6.2. Generating trees uniformly at random
5.6.3. A closed expression
5.6.4. Further correspondences
5.7. Exponential Generating Functions
5.7.1. Labelled enumeration
5.7.2. The exponential generating function
5.7.3. The Bell numbers
5.7.4. 2-regular graphs
5.7.5. Permutations and Stirling’s formula
5.7.6. Labelled graphs and labelled connected graphs
5.8. The Lagrange Inversion Formula
5.8.1. Laurent series
5.8.2. Lagrange inversion
5.8.3. Labelled trees
Preface

These are course notes for a course offered at TU Dresden for bachelor students of mathematics in their third year and computer science diploma students who study mathematics as their second subject. Combinatorics is a vast field and there is no canonical selection of material. When selecting material, we have focussed on methods rather than attempting some encyclopaedic approach. Moreover, in each topic we try to identify the most prototypical results, which we then prove in the simplest possible form that still reveals the idea. In many applications that the students might encounter in the future, stronger forms of the results will be needed; for such situations, we always give references to more advanced textbooks.

The chapters are structured according to these methods, with one exception: we start with a short introduction to graphs, since those form the playfield on which we test our methods. Our second chapter is on duality, with the LP duality theorem at its core. This is a topic that is often taught in optimisation or in theoretical computer science because of its computational consequences. Our focus is on the mathematical consequences of LP duality: many other results can be derived from it in one way or the other. We illustrate this with results about matchings in graphs, or the minimax theorem of Neumann for zero-sum games, or finding the winner in Condon’s simple stochastic games.

The next chapter is about the probabilistic method in combinatorics and its many stunning applications. Our warm-up application is an extremely simple probabilistic existence proof for \(k \)-paradoxical tournaments. A more advanced application is the proof of Erdős that for all \(k, \ell \in \mathbb{N} \) there exists a graph that has chromatic number \(k \) but no cycles of length at most \(\ell \). This result itself has many (generalisations and) applications. Interestingly, the simplest known proof of this theorem is the probabilistic method (despite the fact that there is no probability in the formulation of the result). The probabilistic proof requires random graphs with a carefully chosen edge probability. If you are exposed for the first time with this proof the choice of the edge probability might ‘fall from heaven’. Because of this we prepare the proof by giving an introduction over the landscape of the so-called Erdős-Rényi evolution of the random graph \(G(n,p) \) with \(n \) vertices and edge probability \(p \). Here, \(p \) is a function depending on \(n \), and depending on the asymptotic growth of \(p \) the random graph \(G(n,p) \) may have various properties that hold almost surely, for \(n \) tending to infinity. Many of these properties have a sharp threshold: the probability that these properties hold for large \(n \) jumps from 0 to 1. When discussing these properties, we concentrate on two types of arguments, the first moments method and the second moment method (there are many more advanced techniques but they are out of the scope of this short introduction).

The chapter on Ramsey theory contains another application of the probabilistic method, for proving Ramsey lower bounds. But Ramsey theory itself is an extremely useful tool in many other areas of combinatorics and mathematics in general so that it might also qualify as a method and has its own chapter. We focus on two results: Ramsey’s theorem itself, which we prove via its infinite version. The finite version is
then derived by a typical compactness argument. To keep things simple, we give the proof of the graph version of Ramsey’s theorem, but we state (and use!) the theorem in its general version later. We present two applications of Ramsey’s theorem, in number theory and in geometry. The second big result of the chapter is the theorem of Hales-Jewett, which plays a central role in Ramsey theory. Historically, it has been motivated by positional games, which is a beautiful topic in combinatorics that also creates some links with what we have earlier learned about matchings. We present two more applications of Hales-Jewett, namely a proof of the famous van der Waerden theorem about the existence of monochromatic arithmetic progressions, and another Ramsey-type theorem for graphs (and many more applications can be found in the exercises).

The fourth method that we present are generating functions, used in enumerative combinatorics. Generating functions can be viewed as formal power series and treated algebraically, or they can be viewed as functions over the complex numbers and treated analytically. Both perspectives have their advantages. In almost all the applications that we present (including more advanced topics, such as the Lagrange inversion formula) we have found purely algebraic treatments (those tend to be more elementary). However, we do not neglect the links to the analytical approach since these link can provide intuition and also connect well to other courses that the students have followed or will follow. With the generating function method, we can then treat very efficiently much of the material that would take central space in many combinatorics courses, namely counting

- words of a given length in a regular language (Chomsky-Schützenberger),
- binary trees of a given size (Catalan),
- equivalence relations on a given set of elements (Bell numbers and Dobiński’s formula),
- labelled connected graphs with a given set of vertices,
- rooted labelled trees with a given set of vertices (Cayley’s formula), and
- permutations of n elements (Stirling’s formula).

Enjoy. Please let us know your comments, suggestions, typos, bug-reports, etc. by email. The script contains many definitions and fundamental facts that were not covered in detail in class because you have already seen these concepts in your algebra and calculus classes. I have still added them to the script because our goal was to keep the script entirely self-contained (for the convenience of the reader; it is always easy to skip these parts!). Thus, please also let us know if there are gaps, missing definitions and missing explanations, we are happy to fill them.

Manuel Bodirsky
CHAPTER 1

Graphs

There are directed and undirected graphs. We start with undirected graphs. In some contexts it is natural or even important to admit multiple edges; but for the beginning we do not need this. We mostly follow the notation of the textbook “Graph Theorie” of Reinhard Diestel [6], which has both an English and a German version. For a set S we write $\binom{S}{2}$ for the set of all two-element subsets of M. The notation is motivated by the following identity

$$\binom{|S|}{2}.$$

Definition 1.0.1. A (simple) undirected graph G is a pair (V, E) where $V = V(G)$ is a set, called the vertex set and where $E = E(G) \subseteq \binom{V}{2}$ is called the edge set.

The elements of the vertex set of a graph G are also called the vertices or the nodes of G. A graph G is called finite if $V(G)$ is finite. If $\{u, v\} \in E(G)$ then u and v are called adjacent, and v is called a neighbour of u. The number of neighbours of x in G is called the degree of x. We give a couple of examples of fundamental graphs along with their names. Let $n \in \mathbb{N}$ be a positive natural number.

- K_n denotes the graph (V, E) with $V := \{1, 2, \ldots, n\}$ and $E := \binom{V}{2}$. This graph is called the n-element clique (or the complete graph).
- I_n denotes the graph $\{(1, 2, \ldots, n), \emptyset\}$ and is called independent set (or stable set) of size n.
- P_n, for $n \geq 2$, denotes the path of length n, that is, the graph (V, E) with $V := \{1, \ldots, n\}$ and $E := \{\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}\}$. Warning: in some books and articles P_n denotes the graph with n edges, and not, as here, the path with n nodes.
- C_n, for $n \geq 3$, denotes the graph

$$\{(0, 2, \ldots, n - 1), \{(i, j) \mid (i - j) \equiv 1 \pmod{n}\}\}$$

called cycle (with n nodes and n edges).

The complement of a graph $G = (V, E)$ is the graph $\overline{G} = (V, \binom{V}{2} \setminus E)$. For instance the complement of I_n is K_n. Obviously, $\overline{\overline{G}} = G$.

Definition 1.0.2 (Isomorphism). Two graphs G and H are called isomorphic if there exists a bijection $f : V(G) \to V(H)$ such that $\{u, v\} \in E(G)$ if and only if $\{f(u), f(v)\} \in E(H)$.

For example the complement of C_5 is isomorphic to C_5.

Definition 1.0.3 (subgraph). A graph H is called a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G) \cap \binom{V(H)}{2}$. An induced subgraph of G is a graph H with $V(H) \subseteq V(G)$, and $E(H) = E(G) \cap \binom{V(H)}{2}$.

\footnote{For the moment, our graphs also don’t have loops; graphs without multiple edges or loops (whatever this is) are called simple.}
For \(V \subset V(G) \) we write \(G[V] \) for the (uniquely determined) induced subgraph of \(G \) with vertex set \(V \), and call \(G[V] \) the subgraph of \(G \) induced by \(V \). A sequence \((u_1, u_2, \ldots, u_l)\) of nodes of a graph \(G \) is called a walk from \(u_1 \) to \(u_l \) in \(G \) if \([u_i, u_{i+1}] \in E(G)\) for all \(i \in \{1, \ldots, l-1\} \). We allow the case \(l = 1 \); in this case the walk has only one vertex and no edges. A walk \((u_1, u_2, \ldots, u_l)\) is called closed if \(u_1 = u_l \), and otherwise open. A walk \((u_1, u_2, \ldots, u_l)\) is called a path from \(u_1 \) to \(u_l \) if \(u_i \neq u_j \) for distinct \(i, j \in \{1, \ldots, l\} \). Note that if there is a walk from \(u \) to \(v \) then clearly there is also a path from \(v \) to \(u \).

A cycle is a walk \((u_0, u_1, \ldots, u_{l-1}, u_l)\) with \(u_0 = u_l \), \(l \geq 3 \) and \(u_i \neq u_j \) for all distinct \(i, j \in \{1, \ldots, l-1\} \). Note that a graph contains a cycle if and only if it contains a subgraph isomorphic to \(C_n \) for some \(n \geq 3 \).

1.1. Connectivity

A graph \(G \) is called connected if for all \(s, t \in V(G) \) there is a walk from \(s \) to \(t \) in \(G \).

Let \(G = (U, E) \) and \(H = (V, F) \) be two graphs with disjoint vertex sets. Then \(G \uplus H \) denotes the graph \((U \cup V, E \cup F)\), called the disjoint union of \(G \) and \(H \). The following is easy to see.

Lemma 1.1.1. A graph \(G \) is connected if and only if it cannot be written as \(H_1 \uplus H_2 \) for graphs \(H_1, H_2 \) with at least one vertex.

A connected component of a graph \(G \) is a connected induced subgraph \(C \) of \(G \) such that for any \(v \notin C \), the graph \(G[C \cup \{v\}] \) is not connected. Clearly, every graph can be written as a disjoint union of its connected components.

More generally, a graph \(G = (V, E) \) is \(k \)-connected, for \(k \geq 1 \), if for any \(S \subseteq V \) with \(|S| = k - 1\) the graph \(G[V \setminus S] \) is connected. So we see that a graph is connected if and only if it is \(1 \)-connected. We state the following without proof; three different proofs can be found in [6]. Two paths \((u_1, \ldots, u_k)\) and \((v_1, \ldots, v_l)\) from \(a = u_1 = v_1 \) to \(b = u_k = v_l \) are called independent if \(\{u_1, \ldots, u_k\} \cap \{v_1, \ldots, v_l\} = \{a, b\} \).

Theorem 1.1.2 (Menger’s theorem). A finite graph \(G = (V, E) \) is \(k \)-connected, for \(k \geq 1 \), if and only if for all \(a, b \in V \) there are at least \(k \) pairwise independent paths from \(a \) to \(b \).

1.2. Colorability

A \(k \)-colouring of a graph \(G \) is a function

\[
f : V(G) \to \{0, 1, \ldots, k-1\}
\]

such that \(f(u) \neq f(v) \) for all \(\{u, v\} \in E(G) \). A graph \(G \) is called \(k \)-colourable (or \(k \)-partite) if there exists a \(k \)-colouring of \(G \). When is a graph 2-colourable?

Proposition 1.2.1. A finite graph \(G \) is 2-colourable if and only if it contains no odd cycles (i.e., cycles of odd size).

Proof. Odd cycles are certainly not 2-colourable, and neither are graphs that contain odd cycles. So suppose that \(G = (V, E) \) has no odd cycles. Note that \(G \) is 2-colourable if and only if all its connected components are 2-colourable. We color a connected component \(C \) of \(G \) as follows:

1. Select an arbitrary vertex \(u \) in \(C \) and define \(f(u) := 0 \).
2. For all \(v \in N(u) \) define \(f(v) := 1 \).
3. If \(f(v) \) is defined for all \(v \in C \) then \(f \) is the desired colouring.
4. Otherwise, suppose that \(f(w') = i \) and \(w \in N(w') \). Define \(f(w) := 1 - i \).
5. Continue with step 3.
1.3. TREES

Figure 1.1. The Clebsch graph (see Exercise 1).

Since C is finite, this procedure terminates after finitely many steps, and we have found the desired colouring.

Note that the proof shows that there exists an efficient algorithm (which performs at most linearly many operations in $n + m$) that determines for a given graph whether it is 2-colorable.

Two-colorable graphs are also called bipartite. In other words, a graph G is bipartite if its vertex set can be partitioned into two independent sets A and B. The set $\{A, B\}$ is called a bipartition of G, and A and B are called partition classes (or colour classes).

Example 1.2.2. $K_{n,m}$ denotes the complete bipartite graph with partition classes $P_1 := \{1, \ldots, n\}$ and $P_2 := \{n + 1, \ldots, m + n\}$, that is,

$K_{n,m} = (P_1 \cup P_2, \{\{u, v\} \mid u \in P_1, v \in P_2\})$.

When is a graph 3-colourable? For this we do not have a similarly elegant description as in Proposition 1.2.1. It is an (important) open problem (in fact, it is one of the Millennium Problems of the Clay Mathematics Institute; http://www.claymath.org/millennium-problems/p-vs-np-problem) whether there exists an efficient algorithm that tests for a given graph whether it is 3-colourable.

Exercises.

1. Show that the Clebsch graph (see Figure 1.1) is 4-colourable, but not 3-colourable.

2. Suppose that a graph has 12 edges and 6 vertices, each of which has degree 3 or 5. How many vertices are there of each degree?

3. If a graph G has p vertices, and the degree of every vertex is at least $\lceil \frac{p - 1}{2} \rceil$, then G is connected.

1.3. Trees

A tree is a connected graph (V, E) with at least one vertex and without cycles. More generally, a graph without cycles are called a forest. Clearly, from what we have learned in Section 1.1, every forest is a disjoint union of trees (so the degenerate graph without any vertex is considered to be a forest: it contains no cycles, and it is the union of 0 trees). Proposition 1.2.1 implies that trees (and forests) are 2-colourable.

A node in a tree with degree one is called a leaf. The following statements are very easy to prove and left for the reader.

Lemma 1.3.1. Every finite tree with at least two nodes has a leaf.

We write $G - x$ for the subgraph of G induced by $V(G) \setminus \{x\}$

Lemma 1.3.2. Let $G = (V, E)$ be a finite connected graph with at least one node. Then the following are equivalent:
(1) G is a tree.
(2) $|E| = |V| - 1$.
(3) $|E| \leq |V| - 1$.

Lemma 1.3.3. Let G be a graph. Then the following are equivalent.
(1) G is a tree.
(2) G has maximally many edges without containing a cycle.
(3) G has minimally many edges with the property of being connected.
(4) Between any two nodes in G there exists a unique path.

1.4. Matchings

Let G be a graph. A matching (in G) is a subset M of $E(G)$ of pairwise disjoint edges; that is, for all $u, v \in M$ we have $u \cap v = \emptyset$. A perfect matching is a matching M with $2|M| = |V|$. If $\{x, y\} \in M$ then y is called the partner of x. If $S \subseteq V(G)$ then M is a matching of S if every element of S appears in an edge of M.

How can we find in G a matching of maximal size? Let M be any matching in G. A path in G whose edges alternate between edges from $E \setminus M$ and edges from M is called an alternating path. An alternating path P is called augmenting with respect to M if both the first and the last vertex of P have no partner in M. Augmenting paths can be used to obtain larger matchings than M. To formalise this we need the notion of a symmetric difference of two sets A and B: this is the set

$$A \Delta B := \{x \in A \cup B \mid x \notin A \cap B\}.$$

Lemma 1.4.1. Let M_1 and M_2 be matchings in $G = (V,E)$. Then the graph $(V, M_1 \Delta M_2)$ consists of a disjoint union of cycles of even length and of paths.

Let M' be the symmetric difference of M and the augmenting path P. Then M' is again a matching and $|M'| > |M|$.\[\square\]

Proof. We have already seen that a matching with an augmenting path cannot be of maximal size. To prove the converse, suppose that G has a matching M' in G with $|M'| > |M|$. Since $|M'| > |M|$ the graph $(V, M' \Delta M)$ has a component with more edges from M' than from M. By Lemma 1.4.1 such a component must be an augmenting path with respect to M.\[\square\]

If $S \subseteq V$ we write $N(S)$ for $\{n \in V \mid \{n,s\} \in E$, for some $s \in S\}$, the neighborhood of S in G. An obvious necessary condition for the existence of a matching of $S \subseteq V$ in G is $|N(S)| \geq |S|$. This condition is in general not sufficient (example?). Theorem 1.4.3 presents a necessary and sufficient condition for the existence of a matching of S in G in bipartite (i.e., two-colorable) graphs.

In the following, let $G = (V,E)$ be a bipartite graph with a fixed bipartition A,B, so that $A \cup B = V$ and A,B are independent sets.

Theorem 1.4.3 (Hall’s marriage theorem). A bipartite graph G has a matching of $A \subseteq V(G)$ if $|N(S)| \geq |S|$ for all $S \subseteq A$.

Manuel’s favourite proof. Let M be a matching of G such that $a_0 \in A$ remains without partner. We will construct an augmenting path with respect to M. Let $a_0, b_1, a_1, b_2, a_2, \ldots$ be a sequence of maximal length of distinct vertices $a_i \in A$ and $b_i \in B$ such that

1. $\{b_i, a_i\} \in M$, and
2. b_i has an edge to a vertex $a_{f(i)} \in \{a_0, \ldots, a_{i-1}\}$.

By assumption this sequence cannot end in a vertex from A: the i nodes a_0, \ldots, a_{i-1} together have at least i neighbours in B, so we can always find an edge $\{a, b\} \in E$ such that $a \in \{a_0, \ldots, a_{i-1}\}$ and $b \in B \setminus \{b_1, \ldots, b_{i-1}\}$. Let $b_k \in B$ be the last vertex of this sequence. Because of the two properties $P := b_k a f_1(k) b f_2(k) a f_2(k) b f_3(k) \cdots a f_i(k)$ with $f'(k) = 0$ is an alternating path.

We claim that b_k has no partner in M. If a would be a partner of b_k and $a = a_i$ for an $i \in \{1, \ldots, k - 1\}$, then $b_k = b_i$, since M is a matching, contradiction. If $a \neq a_i$ for all $i \in \{1, \ldots, k - 1\}$, then $a_k := a$ would prolong our sequence, contradicting its maximality. Hence, b_k is without partner and P is an augmenting path.

Adrés’ favourite proof. Suppose for a contradiction that there is no matching for A in G and $|N(S)| \geq |S|$ for all $S \subseteq A$. Let M be a matching of G of maximal size. Since M is not a matching for A, there is some $u \in A$ without a partner in M. Note that $N(u) \neq \emptyset$ because $|N(u)| = |\{u\}| = 1$ by hypothesis, and $N(u)$ contains endpoints of edges in M by maximality of M. In the rest of this proof, the adjective “alternating” will refer to the matching M.

Let X be the set containing all vertices that can be reached by alternating paths that start in u, and let $B' := X \cap B$ and $A' := X \cap A$. We claim that every $b \in B'$ is the partner of some $a \in A' \setminus \{u\}$: by the definition of B', there is an alternating path P from the unmatched u to b. By Lemma 1.4.2 the path P cannot be augmenting, so b must have a partner a in M. Then $a \in A'$ since a appended at the path P gives an alternating path from a to a. We also have $a \neq u$ because u has no partner in M. Similarly, each vertex in $A' \setminus \{u\}$ is the partner of some vertex in B'. Therefore, $|A'| = |B'| + 1$.

Now we claim that $N(A') \subseteq B'$. Suppose that $w \in B$ is connected to some $d \in A'$. There are two cases to consider:

1. If $\{w, d\} \in M$, then $w \in B'$ by the argument above, and
2. If $\{w, d\} \notin M$, then w is on an alternating path starting from u, so that $w \in B'$.

From this we get $|N(A')| = |A'| - 1$, contradicting the hypothesis.

Exercises.

4. The goal of this exercise is to show that the marriage theorem is false for infinite bipartite graphs. Let G be the graph with vertex set Z and edge set

$$\{\{a, -a\} \mid a \in Z \setminus \{0\}\} \cup \{\{0, a\} \mid a \in N \setminus \{0\}\}.$$

Show that the conditions in Hall’s marriage theorem are satisfied for $A := \{a \in Z \mid a \leq 0\}$, but that A has no matching in G.

5. Let G be a bipartite graph with partition classes A and B, and let $A' \subseteq A$ and $B' \subseteq B$. Suppose that A' has a matching in G and B' has a matching in G. Prove that there exists a matching of $A' \cup B'$ in G. Does this statement hold if G is infinite?

1.5. Applications

A graph G is called k-regular if every note in G has degree k.

Corollary 1.5.1. Every bipartite k-regular graph, for $k \geq 1$, has a perfect matching.

Proof. Every subset $S \subseteq A$ has exactly $k|S|$ edges into $N(S)$. Together there are $k|N(S)|$ edges to vertices in $N(S)$. Therefore $k|S| \leq k|N(S)|$ and $|S| \leq |N(S)|$. The Marriage Theorem gives us a matching of A in G. In regular bipartite graphs we clearly have $|A| = |B|$. Hence we have found a perfect matching for G.

□
Another consequence of the marriage theorem is the important theorem of Kőnig. Let $G = (V, E)$ be a graph. A set $U \subseteq V$ is called a covering of G if every edge of G contains a vertex from U.

Theorem 1.5.2 (Kőnig). Let G be a finite bipartite graph. Then the maximal size of a matching of G equals the minimum size of a covering of G.

Proof. Let U be a covering of G of minimal size. Let M be a matching of G. We need at least $|M|$ nodes to cover M. Hence, $|U| \geq |M|$. We will prove that there exists a matching of size $|U|$ in G. Let $U_1 := U \cap A$ and $U_2 := U \cap B$. To verify the marriage condition for U_1 in the bipartite graph $G_1 := G[U_1 \cup B \setminus U_2]$, we have to show for an arbitrary $S \subseteq U_1$ that $|S| \leq |N(S)|$. Otherwise, we could have replaced the set S in U by the smaller set $N(S)$, and would still have a cover of G, contradicting the minimality of U. The Marriage Theorem (Theorem 1.4.3) gives us a matching M_1 of U_1 in G_1. Analogously, we obtain a matching M_2 of U_2 in the graph $G_2 := G[U_2 \cup A \setminus U_1]$. Then $M_1 \cup M_2$ is a matching in G, and $|M_1 \cup M_2| = |U_1| + |U_2| = |U|$. \qed

Another very useful combinatorial presentation of the marriage theorem is the following. Let F be a finite family of finite subsets of a finite set X where the members of F are counted with multiplicity (i.e., the same set might appear several times in F). A transversal (or system of distinct representatives) for F is the image of an injective function f from F to X such that $f(S) \in S$ for every $S \in F$. In other words, f selects one representative from each set in F in such a way that no two sets from S get the same representative. We are interested in characterising the situation when F has such a transversal.

The collection F satisfies the **marriage condition** when for each subfamily $S \subseteq F$

$$|S| \leq | \bigcup_{A \in S} A|.$$

Clearly, if the marriage condition fails that there cannot be a transversal f of F. The following is basically a reformulation of Hall’s marriage theorem.

Theorem 1.5.3. Let F be a family of finite subsets of a set X. Then F has a transversal if and only if F satisfies the marriage condition.

Proof. Let $F = \{A_1, A_2, \ldots, A_n\}$. Let G be the bipartite graph with colour classes F and X and with and edge between $A_i \in F$ and $y \in X$ if $y \in A_i$. The marriage condition for F implies that for any $S \subseteq F$ we have $|N(S)| \geq |S|$, so Hall’s marriage theorem for bipartite graphs implies that F has a a matching of F in G. The matching is the graph of a transversal of F, proving the statement. \qed

Exercises.

1. Deduce Theorem 1.4.3 (Hall’s marriage theorem finite bipartite graphs) from Theorem 1.5.3.

2. A Latin square of order n is matrix $A \in \{1, \ldots, n\}^{n \times n}$ such that each symbol appears exactly once in each row and each column. If $A \in \{1, \ldots, n\}^{m \times n}$ for $m < n$ is such that each symbol appears at most once in every row and every column then A is called a Latin rectangle. Use Hall’s marriage theorem to prove that any $m \times n$ Latin rectangle can be extended to an $n \times n$ Latin square.

3. A partially ordered set is a pair (P, \leq) where P is a set and \leq is a binary relation that satisfies for all $p, q, r \in P$:

 a) $p \leq p$,

 b) $p \leq q$ and $q \leq p$ imply $p = q$,

 c) $p \leq q$ and $q \leq r$ imply $p \leq r$.

 Use the marriage theorem to prove that a partially ordered set (P, \leq) is a total order.

4. Let $G = (V, E)$ be a graph. A set $U \subseteq V$ is called a covering of G if every edge of G contains a vertex from U.

 a) Use Theorem 1.5.2 to prove that the number of edges in a graph G equals the minimum size of a covering of G.

 b) Prove that a graph G has an edge coloring if and only if G has no clique of size $\omega(G)$.

 c) Use Theorem 1.5.2 to prove that a graph G is bipartite if and only if G has no odd cycle.

5. Let $G = (V, E)$ be a graph. A set $U \subseteq V$ is called a covering of G if every edge of G contains a vertex from U.

 a) Use Theorem 1.5.2 to prove that the number of edges in a graph G equals the minimum size of a covering of G.

 b) Prove that a graph G has an edge coloring if and only if G has no clique of size $\omega(G)$.

 c) Use Theorem 1.5.2 to prove that a graph G is bipartite if and only if G has no odd cycle.
(b) if $p \leq q$ and $q \neq p$, then $p = q$, and
(c) if $p \leq q$ and $q \leq p$, then $p \leq r$.

Two elements p, q of P are called comparable if $p \leq q$ or $q \leq p$, and incomparable otherwise. A subset S of P is called
- a chain if all pairs of elements of S are comparable.
- an antichain if distinct elements of S are incomparable.

Use König's theorem to prove Dilworth's theorem: if (P, \leq) is a finite partial order, then the size of the largest antichain of P equals the minimal k such that there are chains C_1, \ldots, C_k in P such that $P = C_1 \cup \cdots \cup C_k$.

(9) Consider the following two-person game played on an undirected graph $G = (V, E)$. There are two players, A and B, that play alternatingly. At each step the players choose a previously unchosen edge such that the set of chosen edges forms a simple path. The first player who is unable to make a legal move looses. Prove: if G has a perfect matching, then the first player has a winning strategy.

(10) Consider the following variant of the game of the previous exercise. This time, the players alternatingly pick a vertex. At the first move, the choice can be arbitrary. After that, the picked vertex must always be adjacent to the previously picked vertex. Prove that the second player has a winning strategy if and only if the graph has a perfect matching.
CHAPTER 2

Duality

Proposition 1.2.1 is an example of a duality: for every graph G, either it is 2-colourable, which is easy to verify once we are given the 2-colouring $f: V(G) \to \{0, 1\}$, or it contains an odd cycle, which is easy to verify, too. Even Lemma 1.1.1 can be viewed as a (baby-) duality: either a graph has a decomposition as a disjoint union of non-trivial smaller graphs, or for every pair of vertices $u, v \in V(G)$ there exists a path from u to v in G. The marriage theorem of Hall and the theorem of König are further examples of dualities.

One way to formalise the similarities in these statements has been proposed by Jack Edmonds. A class of finite graphs C (or a class of more general mathematical structures) is said to have a good characterisation if

- C is in the complexity class NP (i.e., there exists a polynomial-time non-deterministic Turing machine that decides membership in C), and
- the complement of C is in the complexity class NP, too, i.e., C is in the complexity class coNP.

Typically, if a class is in NP \cap coNP, it is also in the complexity class P, i.e., it can be solved in polynomial time. Hence, a good characterisation for C can be taken as an indication that an efficient algorithm for membership in C exists.

In this section we first revisit a well-known duality from linear algebra. We then find a common generalisation of König’s theorem for matchings and linear algebra duality.

2.1. Duality in Linear Algebra

Let $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$. If $Ax = b$ has a solution, then this can be shown by simply presenting a solution from \mathbb{Q}^n for the vector of unknowns. Are there also simple proofs for unsatisfiability of $Ax = b$ (perhaps even simpler than performing Gaussian elimination)?

Theorem 2.1.1 (Duality). Let $A \in \mathbb{Q}^{m \times n}$, $x = (x_1, \ldots, x_n)$ an n-tuple of variables, and $b \in \mathbb{Q}^m$. Then $Ax = b$ is unsatisfiable if and only if the system

$$ (A|b)^\top y = (0, \ldots, 0, 1)^\top $$

is satisfiable.

Proof. \Leftarrow is the easier direction. Suppose we can derive from $A|b$ by row transformations row $(0, \ldots, 0, 1)$. Then this means that $Ax = b$ implies $0x_1 + \cdots + 0x_n = 1$, which is unsatisfiable. Hence, $Ax = b$ must be unsatisfiable.

Let z_1, \ldots, z_m be the rows of $A|b$. If $(0, \ldots, 0, 1) \in \langle z_1, \ldots, z_m \rangle$ then $(0, \ldots, 0, 1)$ can be derived from $A|b$ with row transformations. We have that

$$(0, \ldots, 0, 1)^\top \in \langle z_1, \ldots, z_m \rangle$$

\Leftrightarrow there are $y_1, \ldots, y_m \in K$ such that $y_1z_1 + \cdots + y_mz_m = (0, \ldots, 0, 1)^\top$

$\Leftrightarrow (A|b)^\top = (0, \ldots, 0, 1)^\top$ has a solution.
The direction \Rightarrow is also easy to show, using the row echelon form. Use row transformations to bring the matrix $(A|b)$ into row echelon form $(C|d)$. If $Ax = b$ is unsatisfiable, then $Cx = d$ is unsatisfiable, and $r := \text{rank}(C) < \text{rank}(C|d)$ by well-known linear algebra. In particular $z_{r+1} = (0, \ldots, 0, d_{r+1})$ with $d_{r+1} \in \mathbb{Q} \backslash \{0\}$. Since this row has been derived from $(A|b)$ by row transformations, we have $(0, \ldots, 0, 1) \in \langle z_1, \ldots, z_m \rangle$. Hence, the system $(A|b)^\top y = (0, \ldots, 0, 1)^\top$ has a solution. \square

2.2. Weighted Matchings

We would like to find a common generalisation of dualities for matchings and the duality of linear algebra that we have just seen in the previous section. In our first step from matchings towards algebra we consider in this section the weighted matching problem. In this problem, we are given a bipartite graph G with partition classes A and B where each edge $e \in E(G)$ is decorated by a weight $w_e \in \mathbb{Q}$. We are interested in finding a matching M of A in G whose weight $w(M) := \sum_{e \in M} w_e$ is maximal. This problem has numerous applications.

2.2.1. Maximum matching as an integer linear program. We will reformulate the weighted matching problem for G as a linear optimisation problem over a system of linear inequalities. We introduce a variable x_e for each edge $e \in E(G)$; the variable x_e can attain values 0 or 1. They encode the desired matching M, where $x_e = 1$ means $e \in M$ and $x_e = 0$ means $e \not\in M$. Then $\sum_{e \in M} w_e$ can be written as $w(x) := \sum_{e \in E(G)} w_e x_e$ where x is a tuple listing all the variables; $w(x)$ will be called the objective function. The requirement that a vertex $v \in V$ appears in exactly one edge from M can be expressed by

$$\sum_{e \in E(G), v \in e} x_e = 1.$$

More generally, a set of linear inequalities over the integers together with a linear objective function is called an Integer Linear Program. Unfortunately, there is in general no efficient algorithm known that solves integer linear programs. However, if the integer linear program comes from a weighted matching problem as described above, a miracle happens, as we will see in the next subsection.

2.2.2. A relaxation. If we leave out the integrality conditions, i.e., if we allow each variable x_e to attain all values in the interval $[0, 1]$, we obtain the following:

Maximize $\sum_{e \in E} w_e x_e$

subject to $\sum_{e \in E, v \in e} x_e = 1$ for each $v \in V$ and $0 \leq x_e \leq 1$ for each $e \in E$. (2)

Such an optimisation problem is called a linear program; they can be solved efficiently, and are extremely important in optimisation and theoretical computer science. There is a notion of a dual of a linear program, and this notion of duality has many applications in combinatorics, as we will see in later sections. For more background on
linear programming, we recommend [18], which we have freely used to prepare the following subsections.

Linear programs that are obtained from integer linear programs as described above are called LP relaxations. A linear program might not have any solution at all (if the set of linear inequalities is unsatisfiable); if this happens for an LP relaxation, then the original integer linear problem does not have a solution as well. For example, this might happen if we consider the integer linear program for a bipartite graph which does not have a perfect matching.

Let us now assume that the LP relaxation has an optimal solution \(s \in \mathbb{Q}^n \), i.e., a solution where the value of the objective function is largest possible. Certainly \(s \) provides an upper bound for the objective function of the original integer program. This is because every feasible solution of the integer program is also a feasible solution of the LP relaxation. The mentioned miracle in the case that we started with the integer program for the weighted matching problem is that this upper bound is also tight: it provides an optimal solution of the original problem!

Theorem 2.2.1. Let \(G = (V,E) \) be a finite bipartite graph with rational edge weights \(w_e \). If the LP relaxation \((2) \) has at least one feasible solution, then it has at least one integral optimal solution. This solution is an optimal solution for the integer program as well, and hence provides a maximum weight matching of \(G \).

Proof. Let \(s \) be an optimal solution of the LP relaxation, and let \(w(s) = \sum_{e \in E} w_e s_e \) be the value of the objective function at \(s \). Let \(k(s) \) be the number of \(e \in E \) such that \(s_e \) is not integral. If \(k(s) = 0 \) there is nothing to be shown. Otherwise, we will produce a new optimal solution \(s' \) such that \(k(s') < k(s) \). Let \(e_1 = \{a_1,b_1\} \in E \) be such that \(0 < s_{e_1} < 1 \). Since \(\sum_{e \in E} s_e = 1 \) there exists another edge \(e_2 = \{a_2,b_1\} \in E \) with \(a_2 \neq a_1 \) such that \(s_{e_2} \) nonintegral. Similarly, we can find a third edge \(e_3 = \{a_2,b_2\} \) with \(0 < s_{e_3} < 1 \). We continue in this manner and obtain a longer and longer path \((a_1,b_1,a_2,b_2,\ldots) \). Since the graph \(G \) has finitely many vertices, eventually we reach a vertex that we have already visited before. Since \(G \) is bipartite, this means that we have found an even cycle \(C = (c_0,\ldots,c_{l-1}) \) such that \(0 < s_{\{c_i,c_{i+1}\}} < 1 \) for all \(i \in \mathbb{Z} \) (indices of \(c \) modulo \(l \)). For a small number \(\epsilon \) define

\[
 s'_e := \begin{cases}
 s_{\{c_i,c_{i+1}\}} - \epsilon & \text{for } e = \{c_i,c_{i+1}\} \text{ and } i \text{ even} \\
 s_{\{c_i,c_{i+1}\}} + \epsilon & \text{for } e = \{c_i,c_{i+1}\} \text{ and } i \text{ odd} \\
 s_e & \text{otherwise.}
\end{cases}
\]

Then \(s' \) satisfies for every \(v \in V \) the condition \(\sum_{e \in E, e \ni v} s'_e = 1 \). For \(\epsilon \) sufficiently small the condition \(0 \leq s'_e \leq 1 \) are satisfied, too, and \(s' \) is a feasible solution. The objective function evaluated at \(s' \) is

\[
 w(s') = \sum_{e \in E} w_e s'_e = w(s) + \epsilon \sum_{i=0}^{l} (-1)^i w_{\{c_i,c_{i+1}\}}.
\]

Since \(s \) is optimal, we must have \(\Delta := \sum_{i=0}^{l} (-1)^i w_{\{c_i,c_{i+1}\}} = 0 \) since otherwise we could achieve \(w(s') > w(s) \) by choosing \(\epsilon > 0 \) for \(\Delta > 0 \) and by choosing \(\epsilon < 0 \) for \(\Delta < 0 \). This means that \(s' \) is an optimal solution which is feasible for all \(\epsilon \) with a sufficiently small absolute value. Let us now choose the largest \(\epsilon > 0 \) such that \(s' \) is still feasible. Then there has to exist \(i \in \{0,\ldots,l-1\} \) such that \(s'_{\{c_i,c_{i+1}\}} \in \{0,1\} \), and \(s' \) has fewer nonintegral components than \(s \). \(\square \)
2.3. The Duality Theorem

This section presents an extremely powerful and useful duality result that implies many of the dualities that we have seen previously, and many more results in combinatorics.

2.3.1. Example first. Let us start with a concrete example. Consider the linear program (see Figure 2.1)

\[
\begin{align*}
\text{maximize } & \ x_1 + x_2 \\
\text{subject to } & \ 3x_1 - x_2 \leq 0 \\
& \ -x_1 + x_2 \leq 4 \\
& \ 2x_1 + 4x_2 \leq 40 \\
& \ x_1, x_2 \geq 0
\end{align*}
\]

Since \(x_1, x_2 \geq 0\) we obtain that

\[
\begin{align*}
x_1 + x_2 & \leq 2x_1 + 4x_2 \leq 40 \\
\end{align*}
\]

so the optimum is bounded by 40. We can obtain a better bound by first dividing the third inequality by two:

\[
\begin{align*}
x_1 + x_2 & \leq x_1 + 2x_2 \leq 20.
\end{align*}
\]

We can do even better by adding the second and two times the third inequality:

\[
x_1 + x_2 = (3x_1 - x_2) + (-2x_1 + 2x_2) \leq 8.
\]

More generally, from the constraints we are trying to derive an inequality of the form \(c_1x_1 + c_2x_2 \leq h\) where \(c_1, c_2 \geq 0\) and \(h\) is as small as possible. We derive inequalities by choosing nonnegative coefficients \(y_1, y_2, y_3\), obtaining

\[
y_1(3x_1 - x_2) + y_2(-x_1 + x_2) + y_3(2x_1 + 4x_2) \leq y_2^4 + y_3^40
\]

which can be rewritten to

\[
(3y_1 - y_2 + 2y_3)x_1 + (-y_1 + y_2 + 4y_3)x_2 \leq 4y_2 + 40y_3
\]

and thus \(c_1 = 3y_1 - y_2 + 2y_3\), \(c_2 = -y_1 + y_2 + 4y_3\), and \(h = 4y_2 + 40y_3\). Finding such \(y_1, y_2, y_3\) is again a linear program, namely

\[
\begin{align*}
\text{minimize } & \ 4y_2 + 40y_3 \\
\text{subject to } & \ 3y_1 - y_2 + 2y_3 \geq 1 \\
& \ -y_1 + y_2 + 4y_3 \geq 1 \\
& \ y_1, y_2, y_3 \geq 0
\end{align*}
\]

Clearly, the optimum of the new linear program, which is called the dual linear program, provides an upper bound for the optimum of the original linear program. Note that in the dual LP, we have one variable for each constraint of the original LP, and one constraint for each variable of the original LP.

In fact, the upper bound from the dual is tight! This can be seen from the observation that the maximum of the original linear program is at least 8, because 4 is attained for \(x_1 = 2\) and \(x_2 = 6\). The minimum of the dual is at most 8, because 8 is attained for \(y_1 = 1\), \(y_2 = 2\), and \(y_3 = 0\). So the maximum of the original linear program equals the minimum of the dual linear program.
2.3.2. The dual linear program in general. Let A be a matrix with m rows and n columns and entries from \mathbb{Q} (the same results hold for \mathbb{R} instead of \mathbb{Q}). Consider the linear program

$$\text{maximize } c^\top x \text{ subject to } Ax \leq b \text{ and } x \geq 0 \quad (P)$$

which we call the primal linear program in the following. Similarly as in Section 2.1, we are trying to combine the m inequalities of the system $Ax \leq b$ with some nonnegative coefficients y_1, \ldots, y_m so that

- the resulting inequality has the j-th coefficient at least c_j, and
- the right-hand side is as small as possible.

This leads to the dual linear program

$$\text{minimize } b^\top y \text{ subject to } A^\top y \geq c \text{ and } y \geq 0 \quad (D)$$

The following is clear from the way we constructed the dual linear program:

Proposition 2.3.1. For each feasible solution t of the dual linear program (D) the value $b^\top t$ provides an upper bound on the maximum of the objective function of the primal (P).

Note that this implies that if (P) is unbounded (from below), then (D) must be infeasible, and if (D) is unbounded (from above) then (P) is infeasible. The following, on the other hand, requires proof.

Theorem 2.3.2 (LP duality). Exactly one of the following possibilities occurs.

1. Neither (P) nor (D) has a solution.
2. (P) is unbounded and (D) has no solution.
3. (P) has no solution and (D) is unbounded.
4. Both (P) and (D) have a solution, and if s is an optimal solution to (P) and t is an optimal solution to (D) then
 $$c^\top s = b^\top t.$$

Example 2.3.3. The problem of finding small vertex covers can also be formulated as an integer linear program, namely as

$$\text{minimize } \sum_{v \in V} y_v \text{ subject to } y_v \geq 0 \quad \text{for all } v \in V$$

$$\sum_{v \in V, v \in e} x_e \geq 1 \quad \text{for all } e \in E$$

Similarly as for matchings it turns out that the LP relaxation provides the optimum also for the integer linear program. Moreover, the linear program for matching that
2. DUALITY

we have already seen for the weighted case

\[
\text{maximize } \sum_{e \in E} x_e \text{ subject to } x_e \geq 0 \text{ for all } e \in E \\
\sum_{e \in E, v \in e} x_e \leq 1 \text{ for all } v \in V
\]

is precisely the dual of the linear program for the vertex cover problem! So linear programming duality implies König’s theorem.

Exercises.

(11) A serious dietician wishes to design a minimal-cost diet to meet the minimum daily requirements of his client, and draws the following table, where \(a_{i,j} \) stands for the content of nutrient \(i \) in food \(j \) per serving, and where \(c_i \) stands for the cost of food \(j \) per serving.

<table>
<thead>
<tr>
<th></th>
<th>Plastic</th>
<th>Soylent</th>
<th>Food</th>
<th>Surta</th>
<th>Surta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>(a_{1,1})</td>
<td>(a_{1,2})</td>
<td>(a_{1,3})</td>
<td>(a_{1,4})</td>
<td>(b_1)</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>(a_{2,1})</td>
<td>etc</td>
<td></td>
<td></td>
<td>(b_2)</td>
</tr>
<tr>
<td>Fat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b_3)</td>
</tr>
<tr>
<td>Cost</td>
<td>(c_1)</td>
<td>(c_2)</td>
<td>(c_3)</td>
<td>(c_4)</td>
<td>(b_4)</td>
</tr>
</tbody>
</table>

Formulate his problem as a linear program. What is the meaning of the dual problem?

2.3.3. Optimality via feasibility. In this section we use the duality theorem to reduce the task of deciding whether a given linear program (P) has an optimal solution to the task of deciding whether a set of linear inequalities has any solution (which can be solved in polynomial time by, for example, the so-called ellipsoid method; see [25] for more details). We simply combine the constraints from (P), the constraints from (D), and add an inequality between the objective functions, obtaining the following system of linear inequalities:

\[
Ax \leq b \\
A^\top y \geq c \\
c^\top x \geq b^\top y \\
x, y \geq 0
\]

For each feasible solution \((s, t)\) for the variables \((x, y)\) of this system, \(s\) is an optimal solution of the linear program (P).

2.3.4. Fourier-Motzkin elimination. Our proof of LP duality uses the lemma of Farkas, which in turn we prove using Fourier-Motzkin elimination. Fourier-Motzkin elimination is a systematic procedure for eliminating variables from systems of linear inequalities. If we eliminate all variables from the system, we might end up with an inequality of the form \(a \leq b \) for a value \(a \) which is strictly larger than \(b \), a contradiction. In this case we know that the original system was infeasible, and otherwise the original system was feasible. Geometrically speaking, we compute in each step a system that describes the projection of the solution space of the system to a subset of the variables. The way this is done is very similar in spirit to Gaussian elimination that we already used in Section 2.1. We look at an example first. Consider the linear system

\[
\begin{align*}
Ax & \leq b \\
A^\top y & \geq c \\
c^\top x & \geq b^\top y \\
x, y & \geq 0
\end{align*}
\]
To eliminate the variable y, we collect lower bounds on y in terms of x, and upper bounds on y in terms of x, so we rewrite the equation system into:

$$y \geq x \quad (5)$$
$$y \geq 2 - \frac{1}{3}x \quad (6)$$
$$y \leq 2 - x \quad (7)$$
$$y \leq \frac{1}{3}x \quad (8)$$

Note that each upper bound must be larger than each lower bound, so the system implies that

$$x \leq 2 - x \quad \text{(combining (5) and (7))}$$
$$x \leq \frac{1}{3}x \quad \text{(combining (5) and (8))}$$
$$2 - \frac{1}{3}x \leq 2 - x \quad \text{(combining (6) and (7))}$$
$$2 - \frac{1}{3}x \leq \frac{1}{3}x \quad \text{(combining (6) and (8))}$$

Rewriting again, we obtain

$$x \leq 1$$
$$x \leq 0$$
$$x \leq 0$$
$$x \geq 3$$

Again combining lower with upper bounds, we obtain a contradiction, so the original system was unsatisfiable. Motzkin’s theorem states that if we cannot derive a contradiction by this procedure, then the original system was satisfiable. This simply follows from the observation that at each step of the procedure, any solution to the new system can be extended to a solution to the old system (by picking any value that lies between the lower and the upper bounds).

The Fourier-Motzkin procedure is not very efficient: in each step, the number of inequalities can grow quadratically, which might lead to an exponential growth in general. However, our current goal is theoretical: we want to prove the duality theorem, and do not care about efficiency. Because of the simplicity of the procedure, it is a very good starting point for proving LP duality.

We mention that the results in this section have straightforward generalisations to the situation where some of the inequalities are strict.

2.3.5. The Farkas lemma. We use Fourier-Motzkin Elimination to prove the following important lemma, the lemma of Farkas. There are numerous variants for this lemma, we give two. They are easily seen to be equivalent. The first variant is the more natural one to prove from Fourier-Motzkin elimination and the second one is the one needed in our proof of the LP duality theorem.
Lemma 2.3.4 (Lemma of Farkas in two variants). Let $A \in \mathbb{Q}^{m \times n}$ and let $b \in \mathbb{Q}^m$.

1. The system $Ax \leq b$ has a solution if and only if every nonnegative $y \in \mathbb{Q}^m$ with $y^\top A = 0^\top$ also satisfies $y^\top b \geq 0$.

2. The system $Ax \leq b$ has a nonnegative solution if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^\top A \geq 0$ also satisfies $y^\top b \geq 0$.

Proof. We prove variant (1) using Motzkin, and then derive (2) from (1).

First we prove the easy direction of variant (1). If $Ax \leq b$ has some solution \hat{x}, and $y \geq 0$ satisfies $y^\top A = 0^\top$, we get $y^\top b \geq y^\top A\hat{x} = 0^\top \hat{x} = 0$. For the interesting direction of (1) we assume that $Ax \leq b$ has no solution. Our task is to construct a vector $y \geq 0$ satisfying $y^\top A = 0^\top$ and $y^\top b < 0$. We find such a witness of infeasibility by induction on the number of variables. In the base case the system $Ax \leq b$ has no variables, so it is of the form $0 \leq b$ with $b_i < 0$ for some $i \leq m$. Then $y = e_i$ (the i-th unit vector) clearly satisfies the requirements for y. If $x \leq b$ has at least one variable, we perform a step of the Fourier-Motzkin elimination. This yields an infeasible system $A'x' \leq b'$ with one variable less. So inductively we find an unfeasibility witness y' for it. Recall that all inequalities of $A'x' \leq b'$ are positive linear combinations of original inequalities; equivalently, there is an $m \times m$ matrix M with all entries nonnegative and $(0|A') = MA$, $b' = Mb$. We claim that $y = M^\top y'$ is a witness of infeasibility for the original system $Ax \leq b$. Indeed, we have $y^\top A = y^\top MA = y^\top (0|A') = 0^\top$ and $y^\top b = y^\top Mb = y^\top b' < 0$ since y' is a witness of infeasibility for $A'x' \leq b'$. The condition $y \geq 0$ follows from $y' \geq 0$ by the nonnegativity of M.

To prove that (1) implies (2) we have to find an equivalent condition for $Ax \leq b$ having a nonnegative solution. Let $\hat{A} = (\begin{smallmatrix} A & 0_m \end{smallmatrix})$, where I_n is the $n \times n$-unit matrix, and $\hat{b} = (b, 0)$. Note that $Ax \leq b$ has a nonnegative solution if and only if $\hat{A}x \leq \hat{b}$ has any solution. The latter is equivalent, by (1), to the condition that all $\bar{y} \geq 0$ with $\bar{y}^\top \hat{A} = 0^\top$ satisfy $\bar{y}^\top \hat{b} \geq 0$. Writing $\bar{y} = (y, y')$ where y is a vector with m components, we have

\[\bar{y} \geq 0 \text{ and } \bar{y}^\top \hat{A} = 0^\top \text{ if and only if } y \geq 0 \text{ and } y^\top A \geq 0 \text{ and } y^\top b \geq 0. \]

Moreover, $\bar{y}^\top \bar{b} = y^\top b$. Hence, $Ax \leq b$ has a nonnegative solution if and only if all $y \geq 0$ with $y^\top A \geq 0$ satisfy $y^\top b \geq 0$, which is what we had to show. \square

2.3.6. Proving the duality theorem.

Proof of Theorem 2.3.2 Let us assume that the linear program (P) has an optimal solution x^\ast. We show that the dual (D) has an optimal solution as well, and that the optimum values of both programs coincide. Let $\gamma = c^\top x^\ast$ be the optimum value of (P). Then we know that the system of inequalities

$$Ax \leq b, c^\top x \geq \gamma$$ \hfill (9)

has a nonnegative solution, but for any $\epsilon > 0$, the system

$$Ax \leq b, c^\top x \geq \gamma + \epsilon$$ \hfill (10)

has no nonnegative solution. If we define an $(m+1) \times n$-matrix \hat{A} and a vector $\hat{b} \in \mathbb{Q}^{m+1}$ by

$$\hat{A} := \begin{pmatrix} A & 0_m \end{pmatrix}, \hat{b} := \begin{pmatrix} b \\ -\gamma - \epsilon \end{pmatrix}$$

then (9) is equivalent to $\hat{A}x \leq \hat{b}$ and (10) is equivalent to $\hat{A}x \leq \hat{b}$. We now apply variant (2) of the Farkas lemma and conclude that there is a nonnegative vector $\tilde{y} = (u, z) \in \mathbb{Q}^{m+1}$ such that $\tilde{y}^\top \hat{A} \geq 0^\top$ but $\tilde{y}^\top \hat{b} < 0$. These
conditions boil down to
\[A^\top u \geq zc, b^\top u < z(\gamma + \epsilon) \] (11)

Applying the Farkas lemma for the case \(\epsilon = 0 \) we see that the very same vector \(\hat{y} \) must satisfy \(\hat{y}^\top b_0 \geq 0 \), and this is equivalent to
\[b^\top u \geq z\gamma. \]

It follows that \(z > 0 \), since \(z = 0 \) would contradict the strict inequality in (11). But then we may set \(v := \frac{1}{z}u \geq 0 \), and (11) gives
\[A^\top v \geq c, b^\top v < \gamma + \epsilon. \]

In other words, \(v \) is a feasible solution of (D), with the value of the objective function smaller than \(\gamma + \epsilon \).

We have already observed that every feasible solution of (D) has value of the objective function at least \(\gamma \). Hence (D) is a feasible and bounded linear program, and so we know that it has an optimal value \(y^* \). Its value \(b^\top y^* \) is between \(\gamma \) and \(\gamma + \epsilon \) for every \(\epsilon > 0 \), and thus it equals \(\gamma \).

□

2.3.7. The dualization recipe. The linear program (P) in the duality theorem, Theorem 2.1.1, has a very particular shape: all variables must be nonnegative, and we only have inequality conditions, no equalities. We can easily transform a general linear program into a program of this shape: for each variable \(x \), we introduce two new \(x^+ \) and \(x^- \), add the constraints \(x^+ \geq 0 \) and \(x^- \geq 0 \), and we substitute \(x \) by \(x^+ - x^- \) everywhere. Moreover, an equality \(a^\top x = b \) can be rewritten as a conjunction of two inequalities, \(a^\top x \leq b \) and \(a^\top x \geq b \). Finally, inequalities of the form \(a^\top x \geq b \) can be turned by using \(-a^\top x \leq -b \) instead. So we can transform every linear program into one that has the shape as in the duality theorem, and then apply the duality theorem. However, it is always possible to read off the obtain dual LP directly from the original LP, without doing the transformation. For this, we use the following recipe (details can be worked by the readers themselves):

<table>
<thead>
<tr>
<th></th>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>(x_1, \ldots, x_n)</td>
<td>(y_1, \ldots, y_m)</td>
</tr>
<tr>
<td>Matrix</td>
<td>(A)</td>
<td>(A^\top)</td>
</tr>
<tr>
<td>Right-hand side</td>
<td>(b)</td>
<td>(\min b^\top y)</td>
</tr>
<tr>
<td>Objective function</td>
<td>(\max c^\top x)</td>
<td></td>
</tr>
<tr>
<td>Constraints</td>
<td>(i)-th constraint (\leq y_i \geq 0)</td>
<td>(j)-th constraint (\geq)</td>
</tr>
<tr>
<td></td>
<td>(i)-th constraint (\geq y_i \leq 0)</td>
<td>(j)-th constraint (\leq)</td>
</tr>
<tr>
<td></td>
<td>(i)-th constraint (= y_i \in Q)</td>
<td>(j)-th constraint (=)</td>
</tr>
<tr>
<td></td>
<td>(x_j \geq 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_j \leq 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_j \in Q)</td>
<td></td>
</tr>
</tbody>
</table>

A minimisation problem problem can be turned into a maximisation problem by changing the sign of the objective function. Hence, we can compute the dual of the dual when the dual is phrased as a maximisation problem. It is then an easy observation that the dual of the dual equals the primal!

2.4. Applications

2.4.1. Flows in networks. A network \((V, E, s, t, w)\) consists of
- a set of nodes \(V \);
- a set of directed edges \(E \subseteq V^2 \);
- a source \(s \in V \) (there are no outgoing edges \((s, u) \in E\));
- a sink \(t \in V \) (there are no incoming edges \((u, t) \in E\));
• a non-negative capacity function $c: E \to \mathbb{Q}_{\geq 0}$.

Definition 2.4.1 (Flows). A flow in a network (V, E, s, t, c) is a non-negative function $f: E \to \mathbb{R}_{\geq 0}$ such that for every $v \in V \setminus \{s, t\}$:

$$\sum_{(u,v) \in E} f(u,v) = \sum_{(v,u) \in E} f(v,u)$$

(‘What flows in needs to flow out’)

A flow is admissible if $f(u,v) \leq c(u,v)$ for every $(u,v) \in E$. If f is a flow and $U \subseteq V \setminus \{s, t\}$, then summing over the elements in U yields

$$\sum_{(u,v) \in E, u \notin U, v \in U} f(u,v) = \sum_{(v,u) \in E, v \in U, u \notin U} f(v,u)$$

(‘Flow preservation’).

Choosing $U = V \setminus \{s, t\}$ we obtain in particular that what leaves the source is what enters the sink:

$$\sum_{(s,u) \in E} f(s,u) = \sum_{(u,t) \in E} f(u,t).$$

This amount is written $||f||$ and called the strength of the flow f.

Definition 2.4.2. A cut in N is a set $S \subseteq E$ such that the directed graph $(V, E \setminus S)$ does not have a directed walk from s to t.

In other words, S is a cut if every walk from the source to the sink contains at least one edge from S. The capacity of a cut S is defined as

$$c(S) := \sum_{e \in S} c(e).$$

Lemma 2.4.3. Let S be a cut in a finite network (V, E, s, t, w) and f an admissible flow, then $||f|| \leq c(S)$.

Theorem 2.4.4 (Ford and Fulkerson; Max Flow = Min Cut). Let (V, E, s, t, w) be a finite network. Then

$$\max_{f \text{ admissible flow}} ||f|| = \min_{S \text{ cut}} c(S)$$

In words: the strength of the biggest admissible flow equals the capacity of the smallest cut.

Exercises.
(12) Write the max-flow problem as an ILP.
(13) Write the min-cut problem as an ILP.
(14) Show that the LP for the max-flow problem is the dual of the LP relaxation of an LP for the min-cut problem.

The translation of the max-flow problem into linear programming is very robust in the sense that it can be adapted to also capture generalisations of the flow problem, for instance the generalisation where each edge $e \in E$ does not only have a capacity $c(e)$, but also a payoff $p(e)$; the payoff of the flow is then defined to be $\sum_{e \in E} p(e)f(e)$. We want to find a flow with maximum payoff (rather than a flow with maximum strength $\sum_{e \in E} s \in e f(e)$). The LP program for the flow problem can be easily adapted to this problem.

2.4.2. The easychair problem. Suppose you are the chair of a scientific conference with peer reviewed submissions of papers; you are leading a program committee whose task is to select 80 papers from the submissions that will be admitted for presentation at the conference. Suppose that 400 papers have been submitted. Each paper will be assigned to at least 3 program committee (PC) members for peer review. Your program committee consists of 60 experts, so that each expert has to write 20 reports (all these numbers are quite realistic). The PC members can select for each paper one of the following responses.

- (0) No, I don’t want to review this paper (I don’t feel qualified).
- (1) I might review this paper.
- (2) Yes, I would like to review this paper.

(This is how things actually happen e.g. within the easychair system).

To turn this into a flow problem we create the following network N where each edge has a payoff value as described at the end of the previous section (taken from http://corner.mimuw.edu.pl/?p=811). Besides the source s and the sink t we have a node for each paper and for each PC member. The edges in E are defined as follows.

- The source s is connected with each PC member with an edge of capacity 20 and payoff 0;
- Each PC member is connected with each paper with an edge of capacity 1 and payoff 1 for NO, payoff 10000 for Maybe, and payoff 10001 for Yes.
- Each paper is connected with the sink t with an edge of capacity 3 and payoff 0.

We are interested in a flow with maximum payoff (again, see the remarks at the end of the previous section for the variant of the maximum flow problem with payoffs). An integral flow of size 1 from a PC member to a paper means that the PC member has to write a report for the paper. They payoffs are chosen so that maximum flow assigns as many papers as possible to PC members that chose ‘Yes’ or ‘Maybe’ for that paper. If there are several flows that are equally good with respect to this condition, it prefers flows that have more papers assigned to PC member that chose ‘Yes’ rather than ‘Maybe’.

Note that just optimising the flow for the (global) payoff can lead to very unfair assignments: some PC members might receive many papers that were labelled by No, while others have none. This can be addressed as well; we refer to the discussion in http://corner.mimuw.edu.pl/?p=811).

2.4.3. Von Neumann minimax theorem. A zero sum game is a game with two players in which each player has a finite set of strategies. The payoff to the first player is determined by the strategies chosen by both players. The payoff to the
second player is the negative payoff to the first, so the sum of their payoffs is zero. The following Paper-Scissor-Stone game is a zero sum game.

<table>
<thead>
<tr>
<th></th>
<th>Column Player</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>0 -1 1</td>
</tr>
<tr>
<td>Scissor</td>
<td>1 0 -1</td>
</tr>
<tr>
<td>Stone</td>
<td>-1 1 0</td>
</tr>
</tbody>
</table>

If the row player plays strategy i, and the column player plays strategy j, the payoff to the column player is $a_{i,j}$. If the row player plays first, she can obtain the profit

$$\max_i \min_j a_{i,j}.$$

If the row player plays last, she can obtain the profit

$$\min_j \max_i a_{i,j}.$$

In our concrete game Paper-Scissor-Stone, we have that for all strategies j

$$\max_i a_{i,j} = 1$$

and for all strategies i we have

$$\min_j a_{i,j} = -1$$

So it is a big advantage to play second in the above game.

Now we change the game. Each of the players has to expose a probability distribution $\Delta = \{x \in \mathbb{R}^3 \mid \alpha \geq 0, \sum x_i = 1\}$ on the strategies; these are called mixed strategies. Is it still an advantage to play second in the game? If the row player plays first, her profit is

$$P_1 := \max_{x \in \Delta} \min_{y \in \Delta} \sum_{i,j} x_i y_j a_{i,j}.$$

If the row player plays second, her profit is

$$P_2 := \min_{x \in \Delta} \max_{y \in \Delta} \sum_{i,j} x_i y_j a_{i,j}.$$

We will show that $P_1 = P_2$. As we will see, $P_1 \leq P_2$ is the easy direction. For compact notation, we write $A = (a_{i,j})$ for the payoff matrix, so that the expected payoff $\sum_{i,j} x_i y_j a_{i,j}$ can be written as $x^\top Ay$.

Theorem 2.4.5 (Von Neumann Min-Max Principle). Let $A = (a_{i,j}) \in \mathbb{Q}^{m \times n}$ be a two-person zero-sum game. Let Γ, Δ be the set of all mixed strategies for row and column player, respectively. Then there are $\tilde{x} \in \Gamma$ and $\tilde{y} \in \Delta$ such that

$$\max_{x \in \Gamma} \min_{y \in \Delta} x^\top Ay = \min_{y \in \Delta} \max_{x \in \Gamma} x^\top Ay = \tilde{x}^\top \tilde{A} \tilde{y}.$$

The following terminology is important and will help us to give a clear presentation of the proof. For simplicity, we call player one Alice (the row player) and player two Bob (the column player). The worst-case payoff for a mixed strategy $x \in \Gamma$ for Alice is defined to be

$$\alpha(x) := \min_{y \in \Delta} x^\top Ay$$

and likewise the worst-case payoff for a mixed strategy $y \in \Delta$ for Bob is

$$\beta(y) := \min_{x \in \Gamma} x^\top Ay.$$

These are well-defined functions since Δ and Γ are compact sets (and this is why we chose \mathbb{R} instead of \mathbb{Q} in the definition of mixed strategies; we will see below that both
settings are equivalent in the sense that the probabilities in the mixed strategies \(\tilde{x} \) and \(\tilde{y} \) in Theorem 2.4.3 can be chosen to be rational, as we will see in the proof). A pair \((\tilde{x}, \tilde{y})\) such that

\[
\alpha(\tilde{x}) = \tilde{x} A \tilde{y} = \beta(\tilde{y})
\]

is called a mixed Nash equilibrium. Alice’s mixed strategy \(\tilde{x} \) is called worst-case optimal if \(\alpha(\tilde{x}) = \max_{x \in \Gamma} \alpha(x) \), and we make the analogous definition for a mixed strategy of Bob.

Proof. We first show how worst-case optimal mixed strategies \(\tilde{x} \) for Alice and \(\tilde{y} \) for Bob can be found by linear programming. Then we prove that \(\alpha(\tilde{x}) = \beta(\tilde{y}) \) holds.

First notice that Bob’s best response to a fixed mixed strategy \(x \) of Alice can be found by solving a linear program. That is, \(\alpha(x) \), with \(x \) a concrete vector of \(m \) numbers, is the optimal value of the following linear program in the variables \(y_1, \ldots, y_n \):

Minimize \(x^\top A y \)

subject to \(\sum_{j=1}^n y_j = 1 \)

\(y \geq 0 \)

In particular, it follows that if \(x \) is rational then \(\alpha(x) \) is rational, too. Unfortunately, \(\alpha(x) \) is not a linear function, so we cannot directly formulate the maximisation of \(\alpha(x) \) as a linear program. Fortunately, we can circumvent this issue by using LP duality. The dual of the above LP is

Maximize \(x_0 \)

subject to \(A^\top x - 1 x_0 \geq 1 \)

\(m \)

\(\sum_{i=1}^m x_i = 1 \)

\(x \geq 0 \)

Clearly, there exist feasible solutions to this LP. If \((\tilde{x}_0, \tilde{x})\) denotes an optimal solution, we have by construction that

\(\tilde{x}_0 = \alpha(\tilde{x}) = \max_{x \in \Gamma} \alpha(x) \).

Symmetrically, we can construct an LP for computing a worst-case optimal mixed strategy \(\tilde{y} \) for Bob:

Minimize \(y_0 \)

subject to \(A^\top y - 1 y_0 \geq 1 \)

\(n \)

\(\sum_{j=1}^n y_j = 1 \)

\(y \geq 0 \)
Now observe that the two linear programs (12) and (13) are dual to each other! This concludes the proof.

The corresponding problem for two-player (or n-player) games that are not necessarily zero-sum is a very interesting problem which is not known to be in P, but believed to not be NP-hard (since if it were NP-hard, then \(\text{NP}=\text{coNP}\)). On the other hand, there is also some evidence that the problem might not be in P; see [5] and the references therein.

Exercises.

(15) Find a mixed Nash equilibrium for the game “Papers-Scissors-Stone-Well” which is the modification of Papers-Scissors-Stone where an additional pure strategy “Well” has been added, which wins against Stone and Scissors, but looses against paper.

2.4.4. Simple stochastic games. A simple stochastic game is a special case of a stochastic game as introduced by Shapley in 1953 (a grad school friend of Nash from the previous section). They are played on a directed graph \(G=(V,E)\) whose vertices are partitioned into three disjoint sets \(V_{\text{max}}, V_{\text{min}}, V_{\text{stoch}}\), called max-, min-, and stochastic vertices, respectively. Moreover, there is a distinguished start vertex \(s\), and two distinguished terminal vertices \(t_{\text{max}}\) and \(t_{\text{min}}\). Each vertex has at least one outgoing edge, except for \(t_{\text{max}}\) and \(t_{\text{min}}\), which have no outgoing edge (they are sinks).

The game is played by two players, called the max player and the min player. At the start of the game, a token is placed on the start vertex. In each round, the token is moved from a vertex \(v\) along some of the outgoing edges at \(v\). When the token is positioned on a max vertex, then player max decides along which edge the token is moved, and when the token is on a min vertex then player min decides. When the token is on a stochastic vertex, then each outgoing edge is chosen with equal probability (so in some sense there is a third player, randomness; for this reason, this type of game is also called a 2\(\frac{1}{2}\)-player game). The game ends when the token reaches \(t_{\text{max}}\) or \(t_{\text{min}}\); in the first case, player max wins, and in the second case, player min wins. If the play continues forever then player min wins. See Figure 2.3 for an example.

A (positional) strategy \(\sigma: V_{\text{max}} \rightarrow E\) for player max is a function that selects for each vertex \(u \in V_{\text{max}}\) one outgoing edge \((u,w)\). Strategies \(\tau: V_{\text{min}} \rightarrow E\) for player min are defined analogously. It can be shown that if a player can win, it can win following such a positional strategy (see [4]). The value \(v_{\sigma,\tau}(u)\) of \(u \in V\) with respect to \(\sigma\) and \(\tau\) is the probability that the pebble reaches \(t_{\text{max}}\) starting from \(u\). The optimal value \(v(u)\) of a vertex \(u \in V\) is defined to be

\[
\max_{\sigma} \min_{\tau} v_{\sigma,\tau}(u).
\]

The value of the game is defined to be \(v(s)\). The primary question about a simple stochastic game is the question: what is its value?

There is no polynomial-time algorithm known that solves this problem. In particular, we will be interested in the decision problem whether the value of the game is at least \(1/2\) (i.e., we decide whether min has a greater winning probability than max if min plays optimally). If the game contains no max vertices, then an optimal strategy for player max can be found by linear programming.

Definition 2.4.6. An assignment \(\tilde{x}\) that satisfies

- \(\tilde{x}(t_{\text{max}}) = 1, \tilde{x}(t_{\text{min}}) = 0;\)
- \(0 \leq \tilde{x}(u) \leq 1\) for all \(u \in V\)
Figure 2.3. An example of a simple stochastic game with the value of each vertex in red.

- $\tilde{x}_u = \min_{(u, w) \in E} \tilde{x}_w$ for $u \in V_{\text{min}}$ out-neighbours w_1, \ldots, w_k and
- $\tilde{x}_u = \frac{\tilde{x}_{w_1} + \cdots + \tilde{x}_{w_k}}{k}$ for $u \in V_{\text{stoch}}$ with out-neighbours w_1, \ldots, w_k

is called a solution to the game.

SSGs might not have unique solutions in general. However, it can be shown that the general case can be (efficiently) reduced to the case where solutions are unique; this is technical and out of the scope of this text. We refer to [4] for details. If a game has a unique solution, then the solution can be found by the following linear program.

\[
\begin{align*}
\text{maximize} & \quad \sum_{u \in V} x_u \\
\text{subject to} & \quad x_u \leq x_w \quad \text{if } u \in V_{\text{min}} \text{ and } (u, w) \in E \\
& \quad x_u \leq \frac{x_{w_1} + \cdots + x_{w_k}}{k} \quad \text{if } u \in V_{\text{stoch}} \\
& \quad \text{and } w_1, \ldots, w_k \text{ are the out-neighbours of } u \\
& \quad x_u \leq 1 \\
& \quad x_{t_{\text{max}}} = 1 \\
& \quad x_{t_{\text{min}}} = 0.
\end{align*}
\]

Theorem 2.4.7. The LP above has an optimal solution, $(x^*_u)_{u \in V}$, and $x^*_u = v(u)$ as defined above.

Proof. It is clear that $x_u := v(u)$, for all $u \in V$, is a solution to the game. It is also clear that every solution to the game gives a valid solution to the LP. Since all variables are upper bounded by 1 and the objective is to maximize $\sum_{u \in V} x_u$ it follows that the LP has an optimal solution x^*.

We claim that every optimal solution to the LP gives a solution to the game. Suppose otherwise that for some $u \in V_{\text{max}}$ we have $x^*_u < x^*_w$ for all out-neighbours w of u. Then we construct a better solution x' to the LP as follows: $x'(u) := \min_{(u, w) \in E} (x^*_w)$ and $x'(w) := x^*(w)$ for all $w \in V \setminus \{u\}$. The new solution satisfies all the constraints.
but has a strictly larger objective function, contradicting the maximality of \(x^* \). Now suppose for contradiction that for some \(u \in V_{\text{stoch}} \) with out-neighbours \(w_1, \ldots, w_k \) we have \(x_u^* < \frac{x_{w_1} + \cdots + x_{w_k}}{k} \). Then similarly as above we can construct a solution with a strictly larger objective function. It follows that if the game has a unique solution, then \(x^* = v(u) \). □

This shows that deciding whether the value of a game is larger than a given threshold is in the complexity class NP: we simply guess an outgoing edge for each \(v \in V_{\max} \), remove all other outgoing edges from \(v \), and turn \(v \) into a min vertex. This corresponds to selecting one strategy for min. The resulting game has no more max vertices and we can find an optimal counter-strategy for min by the LP above.

We now want to argue that the problem is also in coNP. For this, we need the following result, which does not follow from the Minimax theorem since the players have to play pure strategies.

Theorem 2.4.8 (of [26] and [4]). Let \(G \) be a simple stochastic game. Then we have

\[
\max_{\sigma} \min_{\tau} v_{\sigma, \tau}(s) = \min_{\tau} \max_{\sigma} v_{\sigma, \tau}(s).
\]

In order to compute \(v(s) \) we can therefore swap the roles of the players, and solve a very similar linear program for in the case that the game has no min-nodes:

\[
\begin{align*}
& \text{minimize} & \sum_{u \in V} x_u \\
& \text{subject to} & x_u \geq x_w & \text{if } u \in V_{\max} \text{ and } (u, w) \in E \\
& & x_u \geq \frac{x_{w_1} + \cdots + x_{w_k}}{k} & \text{if } u \in V_{\text{stoch}} \\
& & x_u \geq 0 & \\
& & x_{t_{\max}} = 1 & \\
& & x_{t_{\min}} = 0 & \\
& & u \in V
\end{align*}
\]

This shows that deciding the winner in a simple stochastic game is in NP \(\cap \) coNP (a result of Condon [4]).
CHAPTER 3

The Probabilistic Method

For further reading with advanced material, we recommend [2]. For more introductory texts, see [15, 19].

3.1. Tournaments

In this section we present one of the historically first applications of the probabilistic method, due to Erdős [7], solving a problem of the logician Schütte.

A tournament is a directed graph \((V; E)\) such that for any two distinct vertices \(x, y \in V\) we have either \((x, y) \in E\) or \((y, x) \in E\) (but not both). We can imagine this as a soccer tournament with teams \(V\) where every team plays once against every other team; each game has precisely one winner, and there is an edge \((x, y) \in E\) if \(x\) wins against \(y\).

Clearly, there are tournaments such that for every team \(x\) there exists another team \(y\) such that \((x, y) \in E\); we call such tournaments 1-paradoxical. More generally, a tournament \((V, E)\) is called \(k\)-paradoxical if for all vertices \(x_1, \ldots, x_k \in V\) there exists a vertex \(y \in V\) such that \((x_1, y), \ldots, (x_k, y) \in E\). Our question is: does there exist for every \(k \geq 1\) a \(k\)-paradoxical tournament? The construction of a 1-paradoxical tournament is trivial, and a 2-paradoxical tournament is still easy to construct by hand.

Exercises.

(16) Construct such a tournament for \(k = 2\).

For \(k \geq 3\), it seems quite difficult to construct such a tournament. Using the probabilistic method, we will show the existence of such tournaments (without constructing them).

THEOREM 3.1.1. For every \(k\) there exists a finite tournament \((V; E)\) such that for all \(x_1, \ldots, x_k \in V\) there is \(y \in V\) such that \((x_1, y), \ldots, (x_k, y) \in E\).

PROOF. For notational simplicity, we present the proof only for \(k = 3\), but the general case can be shown analogously.

Let us consider a random tournament, i.e. we imagine that between any two distinct vertices \(x, y \in V\) we toss a fair coin to decide whether we add the edge \((x, y)\) or the edge \((y, x)\).

Let \(x, y, z \in V\). The probability that another vertex \(w \in V \setminus \{x, y, z\}\) wins against all three of them is \(2^{-3} = \frac{1}{8}\). Thus, the probability that \(w\) loses against one of them is \(1 - \frac{1}{8} = \frac{7}{8}\). The probability that each of the \(n - 3\) other players loses against at least one of \(x, y, z\) is \(\left(\frac{7}{8}\right)^{n-3}\) because the results of all the involved matches with \(x, y, z\) are mutually independent.

The set \(\{x, y, z\}\) can be selected in \(\binom{n}{3}\) many ways. Now we need the elementary fact that the probability of a sum of events is at most the sum of the probabilities of the events. Equality occurs only when the events are disjoint, which will not be the case in our situation. The computation of the probability of the union can be quite
complicated (involving for example so-called ‘inclusion-exclusion arguments’) but surprisingly often the crude bound above will suffice. We obtain the probability that for at least one of those sets no player beats all three elements x, y, z simultaneously is at most
\[
\binom{n}{3} \left(\frac{7}{8}\right)^{n-3}.
\]
With standard computer calculator, one can compute that for $n = 90$ this bound is still larger than 1, but for $n = 91$ it is $121485 \cdot 0.00000788331\ldots = 0.957704\ldots$. Therefore, there exists at least one tournament with 91 players in which any 3 players are simultaneously beaten by some other player. \[\square\]

We see that the key point in the proof of this theorem is that the exponential decay of $\frac{7}{8}^{n-3}$ wins against the polynomial growth of $\binom{n}{3}$. In this next section we introduce powerful notation to keep more complex arguments about asymptotic growth of functions notationally manageable.

What is the smallest k-paradoxical tournament? Clearly, we need 3 vertices for $k = 1$. For $k = 2$, you already have some bound because you solved Exercise (16) above. For $k = 3$, we have seen that 91 vertices suffice for $k = 3$, but it seems clear from the crude union bound in the proof that most likely smaller tournaments exist. In fact, there is the following lower bound (which to the best of our knowledge could be sharp!), which is not hard to show by induction on k.

Proposition 3.1.2. If (V, E) is a k-paradoxical tournament, then $|V| \geq 2^{k+1} - 1$.

3.2. Asymptotic Growth

In the application of the probabilistic method that we have seen in the previous section, the key point in the proof was that some probability was tending to zero because it was a product of polynomial with a function with exponential decay. We can already guess that asymptotic growth plays an important role in this chapter. We introduce very useful notation to compare functions with respect to their asymptotic growth, going back to Bachman and Landau. Then we recall some basic estimate that will be useful later.

3.2.1. O-Notation. The letters o and O stand for the order of growth of the function. The big-O notation is used to express upper bounds, and the little-o notation to express lower bounds. We mention that there exists related notation to describe other kinds of bounds on asymptotic growth, e.g., Θ, Ω, ω, of which we only need Θ in this text, so we skip the definitions of the others.

Let $g : \mathbb{R} \to \mathbb{R}$ (we use \mathbb{R} for convenience; the same definition applies to other domains such that as \mathbb{N} and \mathbb{Q}, etc). Then $O(g)$ is the set of all functions $f : \mathbb{R} \to \mathbb{R}$ such that there exists $c, x_0 \in \mathbb{R}$ such that $|f(x)| \leq cg(x)$ for all $x \geq x_0$. Note that
\[
f \in O(g) \iff \limsup_{x \to \infty} \frac{|f(x)|}{|g(x)|} < \infty.
\]

In typical usage, the formal definition of $O(g)$ is not used directly; rather, we first use the following simplification rules:

- if $g(x)$ is a sum of several terms, if there is one with largest growth rate, then we drop all other terms;
- if $g(x) = c \cdot f(x)$ and c is a constant that does not depend on x, then c can be omitted.
When we write $O(g)$, we typically choose g to be as simple as possible. O-notation can also be used within arithmetic terms. For example, $h + O(g)$ denotes the set of functions of the form $h + f$ for $f \in O(g)$. In other words, $k \in h + O(g)$ is equivalent to $k - h \in O(G)$.

We write $o(g)$ for the set of all functions $f : \mathbb{R} \to \mathbb{R}$ such that for every $\epsilon \in \mathbb{R}_{>0}$ there exists $x_0 \in \mathbb{R}$ such that $|f(x)| \leq \epsilon g(x)$ for all $x \geq x_0$. Informally, $f \in o(g)$ means that g grows much faster than f. For example, $x \mapsto 2x$ is in $o(x \mapsto x^2)$, and $x \mapsto 1/x$ is in $o(1)$. Note that $o(g) \subseteq O(g)$, and that

$$f \in o(g) \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

Similarly as in the case of the O-notation we may use the o-notation in arithmetic expressions. Note that if $f \in o(g)$ and c is a constant, then $cf \in o(g)$. Frequent notation is to write $f \ll g$ (or $g \gg f$) if $f \in o(g)$.

We write $\Theta(g)$ for the set of all functions f such that there are constants c, C and $x_0 \in \mathbb{R}$ such that $cg(x) \leq f(x) \leq Cg(x)$ for every $x \geq x_0$. In other words, $f \in \Theta(g)$ if $f \in O(g)$ and $g \in O(f)$.

Finally, we write $f(x) \sim g(x)$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$$

and we say that f and g are asymptotically equivalent (for $x \to \infty$).

3.2.2. The exponential function.

We now present a very crude bound which nonetheless turns out to be often sufficient for approximately comparing the growth of functions. We need the definition of the exponential function $\exp : \mathbb{R} \to \mathbb{R}$ given by

$$\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots$$

Recall that for all $x, y \in \mathbb{R}$

$$\exp(x + y) = \exp(x) \cdot \exp(y).$$

So with $e := \exp(1) \in \mathbb{R}$ we see that for $n \in \mathbb{N}$

$$\exp(n) = \exp(1 + \cdots + 1) = e^n$$

and from calculus we know that the identity $\exp(x) = e^x$ holds for arbitrary $x \in \mathbb{R}$. In particular, we have $e^x \geq 1 + x$ for all $x \in \mathbb{R}$. This is obvious for non-negative x and for $-1 < x < 0$ it follows from the definition of \exp by grouping and bounding the terms in pairs. Geometrically this can be explained as follows. The line defined by $y = x + 1$ is the tangent to $y = e^x$ for $x = 0$; since e^x is convex, it always remains above its tangent lines. Phrased differently (and this is how it will be applied frequently):

$$1 - x \leq e^{-x}. \quad (14)$$

Exercises.

17. Show that if $f \in o(g)$ and $g \in o(h)$, then $f \in o(h)$.

18. Show that if $a < b$, then $a^x \in o(b^x)$.

19. Show that if $g \sim h$ then $\Theta(g) = \Theta(h)$, but that the converse need not be true in general.

20. Show that $\log_b(x) \sim \ln(x)$ for every $b \in \mathbb{R}$ (where $\ln(x) := \log_e(x)$ and $\log_b(x)$ is the unique $c \in \mathbb{R}$ such that $b^c = x$).
(21) (From stackexchange) Show that the following pair of monotonic functions are incomparable with respect to asymptotic growth. This is relevant because most complexities arising in practice are in fact monotonic.

\[f(x) = \Gamma([x] + 1) = [x]! \]
\[g(x) = \Gamma([x - 1/2] + 3/2) \]

Here, \(\Gamma \) is the Gamma function. The second function is especially constructed to be very similar to the factorial, just sampled at a slightly different set of points in \(\Gamma \). The functions cross each other periodically in such a way that neither is asymptotically bound by the other.

(22) Show that the class of functions obtained from the identity function and constants using addition, subtraction, multiplication, division, logarithm, and exponentiation is totally ordered by asymptotic growth (i.e., for any two functions in this class, \(f \in O(g) \), or \(g \in O(f) \), or both).

3.3. Random Graphs

In the proof of Theorem 3.1.1, we used random tournaments to prove the existence of tournaments with some very specific combinatorial property. We would like to pick up this idea in the context of simple graphs as introduced in Chapter 1. To that end, we will introduce a famous fundamental model for random graphs, namely \(G(n,p) \).

The presentation is inspired by the text-book *The strange logic of random graphs* by Joel Spencer [27] which I would recommend to master students.

3.3.1. Introducing random graphs. On an intuitive level, \(G(n,p) \) is a graph with vertex set \(V := \{1, \ldots, n\} \) obtained as follows: for each two-element subset \(\{u, v\} \in \binom{V}{2} \) we decide whether to make \(u \) and \(v \) adjacent in the graph based on flipping a biased coin: the coin comes up heads with probability \(p \), and in this case we add the edge \(\{u, v\} \), and otherwise there is no edge between \(u \) and \(v \).

More formally, we have a probability space whose elements are all the \(2^{\binom{n}{2}} \) graphs with vertex set \(V \). The probability distribution is determined by the requirement that the probability that \(u \) and \(v \) are adjacent is \(p \) (in symbols: \(\Pr(\{u, v\} \in E) = p \)), and that these events are for all pairs of vertices mutually independent (that is, if \(e_1, e_2 \in \binom{V}{2} \) then \(\Pr(e_1 \in E \text{ and } e_2 \in E) = \Pr(e_1 \in E) \cdot \Pr(e_2 \in E) \)).

Alternatively, the probability space can be defined as follows. If \(H \) is a graph with vertex set \(V \) and with \(m \) edges, then the probability of the event \(\{H\} \) is \(\Pr(\{H\}) = p^m(1 - p)^{\binom{n}{2} - m} \). However, the first description is the better one when working with \(G(n,p) \) since it stresses the independence of the edge probabilities. Luckily, our probability space is finite and hence every set has a measure; no measure theory is needed in what follows.

We will be interested in properties of random graphs: e.g., what is the probability that \(G(n,p) \) is connected, that it contains \(K_3 \) as a subgraph, etc. Formally, and in the language of probability theory, a property \(A \) of \(G(n,p) \) is nothing but an event in the space that we have just defined. If \(p = 1/2 \), then the probability of an event \(A \) is simply the fraction of all graphs with vertex set \(\{1, \ldots, n\} \) in \(A \) (i.e., that have property \(A \)).

Definition 3.3.1. A property \(A \) holds in \(G(n,p) \) asymptotically almost surely (a.a.s.) if \(\lim_{n \to \infty} \Pr(G(n,p) \in A) = 1 \).

Instead of a.a.s., many scholars use whp. (for with high probability). For \(G(n,p) \), the situation where \(p = 0 \) or \(p = 1 \) are trivial. Otherwise, if \(p \) is a constant strictly
between 0 and 1, it turns out that $G(n,p)$ asymptotically almost surely satisfies a strong property, called the \textit{extension property}.

\textbf{Definition 3.3.2.} Let $r, s \in \mathbb{N}$. The r, s-extension property, denoted by $A_{r, s}$, is the property that for all disjoint sets of vertices $\{x_1, \ldots, x_r\}$ and $\{y_1, \ldots, y_s\}$ there exists a distinct vertex z that is adjacent to all of x_1, \ldots, x_r and to none of y_1, \ldots, y_s.

\textbf{Theorem 3.3.3.} For all $r, s \in \mathbb{N}$ and $0 < p < 1$ the random graph $G(n, p)$ satisfies $A_{r, s}$ a.a.s.

\textbf{Proof.} For given vertices $x_1, \ldots, x_r, y_1, \ldots, y_s$ let $\text{noz}(\vec{x}, \vec{y})$ be the event that there is no valid witness z for the extension property.

\textbf{Claim.} $\Pr(\text{noz}(\vec{x}, \vec{y})) = (1 - p^r(1 - p)^s)^{n - r - s}$. There are $n - r - s$ potential witnesses for a valid extension z. Each has probability $p^r(1 - p)^s$ of being a witness since $r + s$ coin tosses must come up in a particular way. The events ‘z is not a witness’ are mutually independent of the z’s as they involve disjoint sets of coin tosses. Thus the probability that no z is a witness is $(1 - p^r(1 - p)^s)^{n - r - s}$.

There are a $\binom{n}{r}\binom{n - r}{s}$ many choices for \vec{x} and \vec{y}. The probability that $G(n, p)$ does not satisfy $\text{noz}(\vec{x}, \vec{y})$ for some \vec{x}, \vec{y} is bounded by $\binom{n}{r}\binom{n - r}{s}(1 - p^r(1 - p)^s)^{n - r - s}$, which is in $o(1)$. Hence, $A_{r, s}$ holds a.a.s. \hfill \square

\textbf{Exercises.}

(23) Show that for every constant $p \in \mathbb{R}$, $0 < p < 1$, the random graph $G(n, p)$ a.a.s. contains a triangle.

(24) Show that for every constant $p \in \mathbb{R}$, $0 < p < 1$, the random graph $G(n, p)$ a.a.s. is connected.

(25) Is there a single graph that satisfies $A_{r, s}$ for every r, s?

(26) Prove that for every constant $p \in \mathbb{R}$, $0 < p < 1$ and every $k \in \mathbb{N}$, the random graph $G(n, p)$ is a.a.s. k-connected.

(27) Discuss: if $f(p)$ denotes the probability of some event in $G(n, p)$, does the expression ‘$f \in o(1)$ holds a.a.s.’ make sense? Is this expression really defined unambiguously?

\subsection{3.3.2. The Erdős-Rényi evolution.} As p goes from 0 to 1, the random graph $G(n, p)$ evolves from the empty graph to K_n. We will study properties of $G(n, p)$ as p increases. Paul Erdős and Alfred Rényi started the area of random graphs with the discovery that for many natural graph properties \mathcal{A} there exists a narrow range for p where $\Pr(G(n, p) \in \mathcal{A})$ moves from 0 to 1. That range is typically not a constant, but a function that depends on n, and this function is called a \textit{threshold function} for the property \mathcal{A}.

For example, let \mathcal{A} be the graph property “containing a triangle”. There are $\binom{n}{3}$ potential triangles and each has probability p^3 of being a triangle, so the expected number of triangles is $\binom{n}{3}p^3$. When $p(n) \ll \frac{1}{n}$ (for example, if $p = n^{-1.001}$) then the expected number of triangles is in $o(1)$ (i.e., it tends to 0). In this case, it follows from the so-called \textit{first moment method} (presented in the next section) that the probability that $G(n, p)$ a.a.s. does \textit{not} contain a K_3. On the other hand, if $p(n) \gg \frac{1}{n}$ (for example, if $p = n^{0.99}$) then the expected number of triangles goes to infinity. It follows from the so-called \textit{second moment method} (presented in Section 3.3.4) that $G(n, p)$ a.a.s. \textit{does} contain a K_3. Jointly, these two observations prove that the threshold function for containing a K_3 is $1/n$.

3.3. RANDOM GRAPHS 29
3.3.3. The first moment method. One of the most basic probabilistic notions is the expected value of a random variable X. Intuitively, it is the value that we would expect to obtain if we repeated a random experiment many times and took the average of the outcomes of X. More formally, the expectation of X is defined as

$$E[X] := \sum_i i \cdot \Pr(X = i)$$

where the sum is over all values i in the range of X. The following properties of expectation can be easily verified; for a full introduction to probability theory, we refer to Schilling [24]. The first is linearity of expectation. Let X_1 and X_2 be random variables. Then

$$E[X_1 + X_2] = E[X_1] + E[X_2].$$

If X_1 and X_2 are mutually independent then

$$E[X_1 \cdot X_2] = E[X_1] \cdot E[X_2].$$

The use of expectation in existence proofs is based on the following pigeonhole property of expectation: a random variable cannot always be smaller (or always greater) than its expectation.

Theorem 3.3.4 (Markov’s Inequality). Let X be a random variable such that $\Pr(X \geq 0) = 1$ and let $t \in \mathbb{R}$ be positive. Then

$$\Pr(X \geq t) \leq \frac{E[X]}{t}.$$

Proof. Let X be a random variable. The variance of X is defined as

$$\text{Var}[X] := E[(X - E[X])^2].$$

Theorem 3.3.6 (Chebyshev’s Inequality). Let X be a random variable. Then for any positive $t \in \mathbb{R}$

$$\Pr(|X - E[X]| \geq t) \leq \frac{\text{Var}[X]}{t^2}.$$
more generally, if X need good tools to compute or bound the variance of a random variable X. If X is a sum of random variables, then the variance can be computed using the covariance (see formula \[17\] below), which is defined as

$$\text{Cov}[X,Y] := E[(X - E[X])(Y - E[Y])].$$

The expression for the covariance can be simplified.

Since X and Y are independent, then $\text{Cov}[X,Y] = 0$. Note that $\text{Var}[X] = \text{Cov}[X,X] = E[X^2] - E[X]^2$. Also note that

More generally, if $X = \sum_{i \in \{1,\ldots,n\}} X_i$, we have the formula

$$\text{Var}[X] = \sum_{i,j \in \{1,\ldots,n\}} \text{Cov}[X_i,X_j].$$

\[17\]

Proposition 3.3.7. Let $p(n) \gg 1/n$. Then $G(n,p)$ a.a.s. contains a K_3.

Proof. For a subset S of three vertices, let A_S be the event that S induces a K_3 in $G(n,p)$, let X_S be the indicator variable of A_S, and let $X := \sum_{S \in \binom{\mathcal{V}}{3}} X_S$. Clearly,

$$\Pr(X_S = 1) = p^3$$

and $E[X_S] \in O(n^3p^3)$.

Our goal is to show that $\Pr(X = 0) \in o(1)$. By the second moment method,

$$\Pr(X = 0) \leq \frac{\text{Var}[X]}{E[X]^2},$$

so we only need a good upper bound for the variance. By \[17\], the variance can be written in the form

$$\text{Var}[X] = \sum_S \text{Var}[X_S] + \sum_{S \neq T} \text{Cov}[X_S,X_T].$$

\[18\]

Since X_S is an indicator random variable,

$$\text{Var}[X_S] = E[X_S] - E[X_S]^2 \leq E[X_S] = p^3.$$

Since there are $\binom{n}{3}$ sets to consider, the total contribution of the first sum in \[18\] is in $O(n^3p^3)$.

Proof. Let Y be the random variable defined by $Y = (X - E[X])^2$ and apply Markov’s inequality:

$$\Pr(|X - E[X]|) \geq t) \leq \Pr(Y \geq t^2) = \frac{E[Y]}{t^2}.$$

If $E[X] > 0$, then by setting $t = E[X]$, Chebychev’s inequality implies

$$\Pr(X = 0) \leq \Pr(|X - E[X]| \geq E[X]) \leq \frac{\text{Var}[X]}{E[X]^2}.$$ \[16\]

Applying \[16\] is often called the second moment method. Clearly, to apply \[16\] we need good tools to compute or bound the variance of a random variable X. If X is a sum of random variables, then the variance can be computed using the covariance (see formula \[17\] below), which is defined as

$$\text{Cov}[X,Y] := E[(X - E[X])(Y - E[Y])].$$

The expression for the covariance can be simplified.

$$\text{Cov}[X,Y] = E[(X - E[X])(Y - E[Y])]$$

so we only need a good upper bound for the variance. By \[17\], the variance can be written in the form

$$\text{Var}[X] = \sum_S \text{Var}[X_S] + \sum_{S \neq T} \text{Cov}[X_S,X_T].$$

\[18\]
To estimate the second sum we analyse the contribution of a pair \((S, T)\) of distinct subsets. If \(A_S\) and \(A_T\) are independent, then \(\text{Cov}[X_S, X_T] = 0\), and this pair contributes nothing. The events \(A_S\) and \(A_T\) are dependent if and only if \(S\) and \(T\) share common pairs of vertices, that is, if and only if \(S \cap T = 2\). There are \(O(n^4)\) pairs \(S, T\) with \(|S \cap T| = 2\) and for each of these

\[
\text{Cov}[X_S, X_T] \leq E[X_S X_T] = p^5
\]

because there are five edges that have to be present. So the total contribution of these pairs is in \(O(n^4p^5)\) and hence \(\text{Var}[X] \in O(n^5p^3(n^4p^5)) = O(n^8p^8)\). Putting this together we obtain

\[
\text{Var}[X] \in O(n^3p^3 + n^4p^5) = O(n^3p^3) \in o(\text{E}[X]^2).
\]

Therefore, \(\Pr(X = 0) \in o(1)\) and hence \(G(n, p)\) a.a.s. contains a \(K_3\).

3.3.5. The void. Suppose that \(p \ll n^{-2}\). Then asymptotically almost surely there are no edges.

3.3.6. The \(k\)-th day. When \(p(n)\) reaches \(\Theta(n^{-2})\) then edges appear. They form a matching until \(p(n)\) reaches \(\Theta(n^{-3/2})\). Let \(1 \leq k \in \mathbb{N}\).

- When \(p(n)\) reaches \(\Theta(n^{-1-k})\) then a.a.s. trees on \(k + 1\) vertices appear.
- When \(p(n)\) reaches \(\Theta(n^{-1})\) then a.a.s. cycles appear.

We can zoom a bit further on the night between day number \(k\) and day number \(k + 1\). For the remainder of this section we assume that

\[
n^{-k+1} = n^{-1-k/2} \ll p(n) \ll n^{-1-1/k} = n^{-1-k/3}.
\]

Lemma 3.3.8. \(G(n, p)\) has a.a.s. no components with \(k + 2\) (or more) vertices.

Proof. There are \(O(n^{k+2})\) choices of \(k + 2\) vertices and \(O(1)\) choices of a tree on those vertices. With probability \(p^{k+1}\) we have those edges. So the expected number of such trees is \(O(n^{k+2}p^{k+1})\) which is in \(o(1)\) since \(p \in O(n^{-1/3})\) (check!). Again, the statement follows from the first moment method.

Lemma 3.3.9. \(G(n, p)\) has a.a.s. no cycles.

Proof. From the previous lemma it follows that \(G(n, p)\) has a.a.s. no cycles with more than \(k+2\) vertices. There are \(O(n^l)\) choices of \(l \leq k+2\) vertices and \(O(1)\) choices for a cycle, which appears with probability \(p^l\). So the expected number of \(l\)-cycles is \(O((np)^l)\) which is in \(o(1)\) as \(p \ll n^{-1}\). The statement follows from the first moment method.

The first moment method is not sufficient to prove the following; here we need the second moment method.

Lemma 3.3.10. For every \(r\), every tree \(T\) on at most \(k + 1\) vertices appears a.a.s. at least \(r\) times as a component of \(G(n, p)\).

Proof. There are \(\Theta(n^r)\) choices of \(r\) vertices, at least one way of placing a given tree \(T\) on those vertices and probability \(p^{r-1}\) of having the tree edges. The probability that there are no further edges involving those \(r\) vertices is bounded by \((1 - p)^{r(n-1)} \leq e^{-rp(n-1)}\) which is asymptotically one because \(p(n) \ll n^{-1}\). So the expected number of tree components \(T\) is in \(\Theta(n^r p^{r-1})\). One can use the second-moment method to prove that almost surely there are at least \(r\) components \(T\) for any fixed \(r\).
For $S \in \binom{V}{k+1}$, let X_S the the indicator random variable that S induces the tree T in $G(n,p)$. Then the total number of triangles is $X := \sum_{S \in \binom{V}{k+1}} X_S$ we need to bound its variance. We have

$$\text{Var}[X] = \sum_{S \in \binom{V}{k+1}} \sum_{S' \subseteq S \subseteq V \setminus S_{k+1}} \sum_{T \in V \setminus S_{k+1}} \text{Cov}[X_S, X_{S' \cup T}].$$

We have $\text{Cov}[X_S, X_{S' \cup T}] = 0$ if $S' \leq 1$. If $S' > 1$, then

$$\text{Cov}[X_S, X_{S' \cup T}] \leq E[X_S X_{S' \cup T}] \leq p^{2k-(|S'|-1)}.$$

Hence,

$$\text{Var}[X] \in O(\sum_{i>1} n^{2k+2-i} p^{2k+1-i}) \subseteq o((E[X] + r)^2).$$

By Chebychev’s Inequality (Theorem 3.3.6) we have

$$\Pr(X < r) \leq \frac{\text{Var}[X]}{(E[X] + r)^2} \in o(1).$$

\[\square\]

3.3.7. Day ω. Suppose now that $p(n) \gg n^{-1-\epsilon}$ for every $\epsilon > 0$ but $p(n) \ll n^{-1}$. This includes functions such as $p(n) = \frac{\ln n}{n \log n}$. For such functions, the following properties hold a.a.s.:

1. There are no cycles.
2. For every r, every finite tree T occurs at least r times as a component.

The proofs are similar to the ones for day k.

Exercises.

28. Show that if $p(n) \ll n^{-1}$ then $G(n,p)$ is a.a.s. not connected.

3.3.8. The double jump. The random graph undergoes a critical transition at $p(n) = \Theta(n^{-1})$. We do not prove the claims in this section since they require methods that are out of the scope of this course (see [13]); however, we want to state the result since it is an important part of the overall picture of the Erdős-Rényi Evolution. Suppose that $p(n) = c/n$.

- $c < 1$: the largest component has $\log n$ vertices.
- $c = 1$: the size of the largest component jumps to approximately $n^{2/3}$.
- $c > 1$: the size of the largest component jumps to 1.

Thus, $p = 1/n$ is the threshold for a dramatic double-jump in the size of the largest component.

3.3.9. Past the double jump. In this section we assume

$$\frac{1}{n} \ll p(n) \ll \frac{\ln n}{n}.$$

At this stage cycles have appeared, but still small subgraphs only have at most one cycle. The following properties hold a.a.s.:

1. For every k there are no k vertices with at least $k + 1$ edges.
2. For every r and every $k > 3$ there are at least r cycles of size k.
3. For every s, d and every $g \geq 3$ there does not exist a cycle of size k and a vertex of degree d at distance s from the cycle.
4. For every r and every finite tree T there are at least r components isomorphic to T.

The first property can be proved by the first moment method, the second property by the second moment method, similarly as in Proposition 3.3.7. To see the third property, set \(u := k + s + d - 1 \). There are \(O(n^u) \) choices for selecting \(u \) vertices, \(O(1) \) ways to place a \(k \)-cycle, a path of length \(s \) from it to a vertex \(v \), and \(d - 1 \) further neighbours of \(v \). These edges are present with probability \(p^u \). The probability that \(v \) is not adjacent to any other vertex is \((1 - p)^{n-1-d} \). The expected number of such configurations is

\[
n^u p^u (1-p)^{n-1-d} \leq (np)^u e^{-p(n-1-d)} \quad \text{(using 14)}
\]

\[
\in O((np)^u e^{-np}) \subseteq o(1) \quad \text{(since } np \to \infty \).
\]

The fourth property can be shown as in Lemma 3.3.10.

3.3.10. **Beyond connectivity.** At \(p(n) \in \Theta(\ln n/n) \) the random graph \(G(n,p) \) becomes connected. So it loses all its isolated vertices and in fact all its vertices of small degree. Now assume that \(p(n) \) is such that for every \(\epsilon > 0 \)

\[
\frac{\ln n}{n} \ll p(n) \ll n^{-1+\epsilon}.
\]

Then the following holds:

1. For every \(k \), there are a.a.s. no \(k \) vertices with at least \(k + 1 \) edges.
2. For every \(d \) a.a.s. all vertices have at least \(d \) neighbours (in particular, there are no trees left).
3. For every \(r \) and every \(k \geq 3 \) there exist a.a.s. (at least) \(r \) cycles of size \(k \).

The first and third properties can be shown as previously. For the second property the expected number of vertices of degree precisely \(i \) is

\[
n(n-1) \choose i p^i (1-p)^{n-1-i} \leq n(n-1)p^i e^{-np} \quad \text{(using 14)}.
\]

With \(np \gg \ln n \) the term \(e^{-np} \) dominates and it follows that the expected number is in \(o(1) \).

Exercises.

29) Prove Claim (1) in Section 3.3.10
30) Prove Claim (3) in Section 3.3.10
31) For \(c < 1 \), give an algorithm that (always) computes the chromatic number of \(G(n,c/n) \) and has an expected polynomial running time.\(^2\)
32) Prove that if a graph has no \(k \)-element subgraph with at least \(k + 1 \) edges, then every component of the graph has at most one cycle.
33) Please argue why the following statements are not in contradiction:
 - \(G(n,p) \) is a.a.s. connected, and
 - \(G(n,p) \) contains a.a.s at least two cycles, and
 - For every connected graph \(H \) with at least two cycles, \(G \) does not contain \(H \) as a subgraph a.a.s.

3.3.11. **Powers of \(n \).** So far, all properties of the random graph were a.a.s. either true or false. When the edge probability is a rational power of \(n \), for instance \(p = n^{-1/3} \), then there are very natural properties of \(G(n, p) \) whose probability does neither tend to 0 nor to 1 as \(n \) tends to infinity. Take a graph \(H \) with \(n \) vertices and

\(^2\) This has been pushed much further; see 3.
3.4. HIGH GIRTH AND HIGH CHROMATIC NUMBER

Let \(G = (V, E) \) be a graph. The girth of \(G \) is the size of its shortest cycle. We write

- \(\alpha(G) \) for the size of the largest stable set in \(G \);
- \(\chi(G) \) for the chromatic number of \(G \), i.e., the smallest number \(k \) such that \(G \) is \(k \)-colourable.

Let \(c: V \rightarrow \{1, \ldots, k\} \) be a \(k \)-colouring of \(G \). Since the pre-image of a colour under \(c \) is a stable set, we have that \(k \cdot \alpha(G) \geq |V| \). It follows that \(\chi(G) \geq \frac{|V|}{\alpha(G)} \). Therefore, for a fixed number of vertices we can obtain a lower bound for \(\chi(G) \) by obtaining an upper bound for \(\alpha(G) \).

The probability that \(S \subseteq V = \{1, \ldots, n\} \) is a stable set in \(G(n, p) \) is \((1 - p)^{|S|/2})\). The probability that \(G \) has a stable set of size \(x \) is at most \((\frac{n}{x})(1 - p)^{\frac{|S|}{2}}\).

Theorem 3.4.1 (Erdős).

For all \(k, l \in \mathbb{N} \) there exists a graph with girth at least \(\ell \) and \(\chi(G) \geq k \).

Proof. Fix \(0 < \epsilon < 1/\ell \) and let \(G \) be drawn from \(G(n, p) \) with \(p = n^{-1+\epsilon} \). Let \(X \) be the number of cycles of size at most \(\ell \). Then

\[
E[X] = \sum_{i=3}^{\ell} \frac{n(n-1) \cdots (n-i+1)}{2^i} p^i \leq \sum_{i=3}^{\ell} \frac{n^i}{2^i} \in o(n) \quad \text{(since } \epsilon \ell < 1) \]

By Markov’s inequality (Theorem 3.3.4)

\[
\Pr(X \geq n/2) \in o(1). \tag{19}
\]

The probability to have a stable set of size at least \(x \) can be bounded as follows.

\[
\Pr(\alpha(G) \geq x) \leq \left(\frac{n}{x}\right)(1-p)^{\frac{|S|}{2}} \leq n^x e^{-p \frac{x^2}{2}} \quad \text{(using \ref{eq:14})}
\]

Hence, setting \(x = \lceil \frac{3}{p} \ln n \rceil \) we obtain

\[
\Pr(\alpha(G) \geq x) \in o(1). \tag{20}
\]

Let \(n \) be sufficiently large so that both events \ref{eq:19} and \ref{eq:20} have probability less than 1/2. Then there exists a specific \(G \) with less than \(n/2 \) cycles of length at most \(\ell \) and with \(\alpha(G) < x \leq \lceil 3n^{1-\epsilon} \ln n \rceil \). Remove from \(G \) a vertex from each cycle of length at
most \(\ell \). This gives a graph \(G^* \) with at least \(n/2 \) vertices, girth greater than \(\ell \), and \(\alpha(G^*) \leq \alpha(G) \). Thus

\[
\chi(G^*) \geq \frac{|V(G^*)|}{\alpha(G^*)} \geq \frac{n/2}{|3n^{1-\epsilon} \ln n|} \geq \frac{n^\epsilon}{6 \ln n}.
\]

To complete the proof, let \(n \) be sufficiently large so that this value is at least \(k \). \(\square \)

Lovász was the first who gave deterministic constructions of graphs with arbitrarily large girth and chromatic number; another construction was given by Nešetřil and Rödl [20]. A recent reference is [1].
CHAPTER 4

Ramsey Theory

Ramsey theory seeks regularity within disorder: general conditions for the existence of substructures with regular properties. Many questions in Ramsey theory are of the form: “how many elements must a structure have to guarantee that a particular property holds?”

4.1. The Pigeonhole Principle

If \(n \) pigeons fly to fewer than \(n \) holes, there must be one hole that got more than one pigeon. There is an important infinite version of the statement: if infinitely many pigeons fly to finitely many holes, one hole must have gotten infinitely many pigeons. This triviality will be used (and later greatly generalised) in the next tools that we present. We mention that the first moment method can be seen as a probabilistic version of this principle: if the pigeons fly randomly to the holes, then not all holes can have more pigeons than the expected number of pigeons for that hole.

Exercises.

(34) Prove that every finite graph with at least two vertices contains two vertices of the same degree.

4.2. König’s Tree Lemma

König’s tree lemma is a simple but important tool to translate between statements in finite combinatorics and statements in infinite combinatorics. Often, a nice feature of the statements in infinite combinatorics is that they may have fewer quantifiers than their finite counterparts: so sometimes it is easier to prove a statement in infinite combinatorics and to derive the finite counterpart via König’s lemma (we see such an application in Section 4.3).

Lemma 4.2.1 (König’s Tree Lemma). Let \((V,E)\) be a tree such that every vertex in \(V\) has finite degree, and let \(v_0 \in V\). If there are arbitrarily long paths that start in \(v_0\), then there is an infinitely long path that starts in \(v_0\).

Proof. Since the degree of \(v_0\) is finite, there exists a neighbour \(v_1\) of \(v_0\) such that arbitrarily long paths start in \(v_0\) and continue in \(v_1\) (by the infinite pigeonhole principle). We now construct the infinitely long path by induction. Suppose we have already found a sequence \(v_0, v_1, \ldots, v_i\) such that \(v_0, v_1, \ldots, v_i\) can be continued to arbitrarily long paths in \((V,E)\). Since the degree of \(v_i\) is finite, \(v_i\) must have a neighbour \(v_{i+1}\) in \(V \setminus \{v_0, v_1, \ldots, v_i\}\) such that \(v_0, v_1, \ldots, v_i, v_{i+1}\) can be continued to arbitrarily long paths in \((V,E)\). In this way, we define an infinitely long path \(v_0, v_1, v_2, \ldots\) in \((V,E)\).

The degree assumption in Lemma 4.2.1 is necessary, as can be seen from Figure 4.1. The following proposition illustrates one of the many uses of König’s tree lemma.

Proposition 4.2.2. A countably infinite graph \(G\) is \(k\)-colourable if and only if every finite subgraph of \(G\) is \(k\)-colourable.
Figure 4.1. A tree with arbitrarily long paths, but no infinite paths.

Proof. To prove the non-trivial direction of the statement we assume that every finite subgraph of G is k-colourable. Let u_1, u_2, \ldots be an enumeration of $V(G)$. For $n \in \mathbb{N}$, let X_n be the set of all proper k-colourings of the subgraph induced by $\{u_1, \ldots, u_n\}$ in G. We consider the following tree with vertex set $X := \bigcup_{n \in \mathbb{N}} X_n$. We connect $x, y \in X$ if y is the extension of x by one element. Clearly, this defines a tree which has infinitely many vertices by assumption. Moreover, every vertex of this graph has finite degree since there are only finitely many maps $\{u_1, \ldots, u_{n+1}\} \to [k]$.

By König’s tree lemma there exists an infinite path v_0, v_1, v_2, \ldots with $v_i \in X_i$ for all $i \in \mathbb{N}$. Define $f : V(G) \to [k]$ by $f(u_i) := v_i(u_i)$ for all $i \geq 1$. Then f is a k-colouring of G. □

We mention that the proposition also holds for graphs with uncountably many vertices, but then König’s tree lemma is not enough for the proof. Sometimes, proofs as the proof of the proposition above are called compactness arguments, and indeed there is an associated topology which is compact. We refer to courses on general topology or model theory for more about this topic.

4.3. Ramsey’s Theorem

The set $\{0, \ldots, n-1\}$ is sometimes denoted by $[n]$. We refer to mappings $\chi : N^M_s \to [c]$ as a colouring of M (with the colours $[c]$). In Ramsey theory, one writes

$$L \to (m)^s$$

if for every $\chi : N^M_s \to [c]$ there exists an $M \in \binom{L}{m}$ which is χ-monochromatic, i.e., χ is constant on $\binom{M}{s}$. In the following, ω denotes the cardinality of \mathbb{N}. Note the following.

- For all $c \in \mathbb{N}$ we have $[c+1] \to (2)^1_c$: this is the pigeonhole principle.
- For all $c \in \mathbb{N}$ we have $\mathbb{N} \to (\omega)^1_2$: this is the infinite pigeonhole principle.

Theorem 4.3.1 (Ramsey’s theorem). For all $c, m, s \in \mathbb{N}$ there is an $l \in \mathbb{N}$ such that $[l] \to (m)^s_c$.

For $c, m, s \in \mathbb{N}$, the smallest l such that $[l] \to (m)^s_c$ is denoted by $R^c_s(m)$. We first prove a variant of Ramsey’s theorem.

Theorem 4.3.2. $\mathbb{N} \to (\omega)^2_2$.

This statement has the following interpretation in terms of undirected graphs: every countably infinite undirected graph either contains an infinite clique (a complete subgraph) or an infinite independent set.
The empty domain. By Lemma 4.2.1, the tree contains an infinite path \(\chi \). Use this to define a map \(c \) such that \((\mathcal{K}, c) \) is infinite. We now repeat this procedure with any \(x_i \in V_1 \) and \(V_1 \) instead of \(V_0 \). Continuing like this, we obtain sequences \((c_i)_{i \in \mathbb{N}}, (x_i)_{i \in \mathbb{N}}, (V_i)_{i \in \mathbb{N}} \).

Again by the infinite pigeonhole principle, there exists \(c \in [2] \) such that \(c_i = c \) for infinitely many \(i \in \mathbb{N} \). Then \(P := \{ x_i \mid c_i = c \} \) has the desired property. To see this, let \(i < j \) be such that \(x_i, x_j \in P \). Then \(\chi(\{x_i, x_j\}) = c_i = c \).

We now state the infinite version of Ramsey’s theorem; the proof is similar to the proof of Theorem 4.3.2 shown above.

Theorem 4.3.3 (Ramsey’s theorem). Let \(s, c \in \mathbb{N} \). Then \(\mathbb{N} \rightarrow ([\omega]_s)^c \).

A proof of Theorem 4.3.3 can be found in [12] (Theorem 5.6.1); for a broader introduction to Ramsey theory see [10]. Ramsey’s theorem is a consequence of the infinite version via König’s tree lemma, similarly as in Proposition 4.2.2.

Proof of Theorem 4.3.3. Let \((*)_l \chi \) be the property that for all \(m \)-subsets \(M \) of \([l]\) the mapping \(\chi \) is not constant on \([M]_s\). Our proof is by contradiction: suppose that there are positive integers \(c, m, s \) such that for all \(l \in \mathbb{N} \) there is a \(\chi : ([l]) \rightarrow [c] \) such that \((*)_l \chi \).

We construct a tree as follows. The vertices are the maps \(\chi : ([l]) \rightarrow [c] \) that satisfy \((*)_l \chi \). We make the vertex \(\chi : ([l]) \rightarrow [c] \) adjacent to \(\chi : ([l+1]) \rightarrow [c] \) if \(\chi \) is a restriction of \(\chi' \). Clearly, every vertex in the tree has finite degree. By assumption, there are arbitrarily long paths that start in the vertex \(\chi_0 \) where \(\chi_0 \) is the map with the empty domain. By Lemma 4.2.1, the tree contains an infinite path \(\chi_0, \chi_1, \ldots \). We use this to define a map \(\chi^N : ([N]) \rightarrow [c] \) as follows. For every \(x \in \mathbb{N} \), there exists a \(c_0 \in [c] \) and an \(i_0 \in \mathbb{N} \) such that \(\chi_i(x) = c_0 \) for all \(i \geq i_0 \). Define \(\chi^N(x) := c_0 \). Then \(\chi^N \) satisfies \((*)_N \chi \), a contradiction to Theorem 4.3.3.

Exercises.

(35) Let \(R(k, \ell) \) denote the smallest number \(n \) such that if we colour the edges of \(K_n \) in red and blue, the resulting edge-coloured graph always contains a red \(K_k \) or a blue \(K_\ell \). Show that

\[
R(k, \ell) \leq R(k, \ell - 1) + R(k - 1, \ell)
\]

and use \(R(\ell, 2) = R(2, \ell) \) to prove that

\[
R(k, \ell) \leq \binom{k + \ell - 1}{k - 1}.
\]

4.4. A Probabilistic Lower Bound

The proof of Ramsey’s theorem in Section 4.3 was non-constructive: it derived the statement from the infinite version via an application of König’s tree lemma; in particular, we did not learn anything about the size of \(R^c_s(m) \), the minimal \(l \in \mathbb{N} \) such that \([l] \rightarrow ([m]_s)^c \). We now present a probabilistic proof of a lower bound (for simplicity again only for \(c = s = 2 \); the general case is similar).

Theorem 4.4.1. For any \(m \geq 3 \) we have \(R^2_s(m) > 2^{m/2} \).
4. RAMSEY THEORY

Proof. We claim that if $\ell := \lceil 2^{m/2} \rceil$ then with positive probability $G(\ell, 1/2)$ has no clique of size m and no stable set of size m. For $S \in \binom{V}{m}$, let A_S be the event that S forms a clique or a stable set in $G(\ell, 1/2)$. We have $\Pr(A_S) = 2(\ell/2)^m = 2^{1-(\ell/2)}^m$. Since there are $\binom{\ell}{m}$ possible choices for S, the probability that at least one of the events A_S occurs is at most

\[
\left(\frac{\ell}{m} \right) 2^{1-(\ell/2)}^m \left(\frac{\ell^m}{m!2^{1-m^2/m}} \right) = \frac{2^{1/m}}{m!} \cdot \frac{\ell^m}{2^{m^2/2}} < 1 \quad \text{(since } \ell = \lceil 2^{m/2} \rceil) \text{).}
\]

\[\square\]

4.5. Applications

Ramsey theory has numerous applications in many fields, e.g. in topological dynamics [16], set theory, model theory [12], just to name a few. Further applications in number theory, harmonic analysis, geometry, and theoretical computer science are surveyed in [22]. Here, we only give some of the very basic applications of Ramsey’s theorem.

4.5.1. Number Theory. We start with a result motivated by number theory which in fact pre-dates Ramsey’s theorem.

Theorem 4.5.1 (Schur’s theorem, 1917). Let c be a positive integer. Then there exists an $s = s(c) \in \mathbb{N}$ such that for every colouring $f : \{1, \ldots, s\} \to [c]$ there exist $x, y, z \in \{1, \ldots, s\}$ such that

- $x + y = z$;
- x, y, z is monochromatic (i.e., f is constant on x, y, z).

Proof. Let $s = s(c)$ be $R^2_c(3)$. Let $f : [s] \to [c]$. From f, we define a c-colouring h of the edges of K_s:

$h(\{a, b\}) := f(|a - b|)$.

By the choice of s, there is an h-monochromatic 3-element subset $\{u, v, w\}$ of $V(K_s)$. Without loss of generality, $u > v > w$. We claim that $x := u - v$, $y := v - w$, and $z := u - w$ gives the desired subset of $[s]$:

- $f(x) = h(\{u, v\}) = h(\{v, w\}) = f(y)$, since $\{u, v, w\}$ is h-monochromatic;
- likewise, $f(x) = f(z)$;
- $x + y = u - w = z$.

\square

The famous equation of Fermat is

$$x^n + y^n = z^n.$$

Here we study a ‘local’ version of Fermat’s problem, i.e., the question when Fermat’s equation has a non-trivial solutions modulo a prime p. A solution is trivial if $x = z \mod p$ (and $y = 0 \mod p$) or $y = z \mod p$ (and $x = 0 \mod p$).

Corollary 4.5.2. Let $n \in \mathbb{N}$. Then there exists $q \in \mathbb{N}$ such that for all primes $p \geq q$, the equation $x^n + y^n = z^n$ has a non-trivial solution in \mathbb{Z}_p.

Proof. Take $q := s(n) + 1$, where $s(n)$ is taken from Schur’s theorem. Let $p \geq q$. Then $G_n := \{x^n \mid x \in \mathbb{Z}_p^*\}$ is a subgroup of the multiplicative group $\mathbb{Z}_p^* := \mathbb{Z}_p \setminus \{0\}$ of \mathbb{Z}_p, so we can partition \mathbb{Z}_p^* into cosets a_1G_n, \ldots, a_rG_n. Note that $r \leq n$: this follows from the fact that $x \mapsto x^n$ is a homomorphism from \mathbb{Z}_p^* to G_n. Since r equals the
size of the kernel of this homomorphism, it is the number of roots of the polynomial $x^n - 1$ in the field \mathbb{Z}_p, hence $r \leq n$.

Colour the elements of $a_i G_n$ with colour i. Since $r \leq n$ and since

$$|\mathbb{Z}_p^*| = p - 1 \geq q - 1 = s(n),$$

Schur’s theorem implies the existence of a monochromatic triple $(x, y, z) \in (\mathbb{Z}_p^*)^3$ with $x + y = z$. Hence, there are $i \leq r$ and $\tilde{x}, \tilde{y}, \tilde{z} \in \mathbb{Z}_p^*$ such that

$$a_i \tilde{x}^n + a_i \tilde{y}^n = a_i \tilde{z}^n \mod p.$$

Since a_i is not divisible by p it follows that $\tilde{x}^n + \tilde{y}^n = \tilde{z}^n \mod p$. The solution $\tilde{x}, \tilde{y}, \tilde{z}$ is non-trivial since $\tilde{x}, \tilde{y}, \tilde{z}$ are pairwise incongruent modulo p.

4.5.2. Geometry. Now a geometric application. We say that ℓ points p_1, \ldots, p_ℓ in \mathbb{R}^2 are in general position if no three of them are collinear. A subset S of \mathbb{R}^2 is called convex if for all $x, y \in S$

$$\{\alpha x + \beta y \mid \alpha, \beta \in \mathbb{R}, \alpha + \beta = 1, \alpha, \beta \geq 0\} \subseteq S.$$

The convex hull of S is the smallest convex subset of \mathbb{R}^2 that contains S. A convex n-gon is a set of n points in \mathbb{R}^2 such that none of the points lies in the convex hull of the other points. A convex quadrilateral in \mathbb{R}^2 is a convex 4-gon. The happy end problem\footnote{A name given by Erdős since it lead to the marriage of George Szekeres and Esther Klein.} is the following:

Proposition 4.5.3. Let S be a set of 5 points in general position in \mathbb{R}^2. Then S contains four points which form a convex quadrilateral.

Proof. If two points a, b are in the convex hull of the three other points c, d, e, then two out of these three points must lie on the same side as the line connecting a and b. Then these two points together with a, b forms a convex quadrilateral. Otherwise, there are at least four of the points on the boundary of the convex hull, and hence form a convex quadrilateral.

So far, no Ramsey theory is involved. This changes with the next statement. We will present two proofs, both based on Ramsey theory.

Theorem 4.5.4 (Erdős-Szekeres 1935). For every $n \in \mathbb{N}$ there exists an $L \in \mathbb{N}$ such that any set of L points in general position in \mathbb{R}^2 contains the vertices of a convex n-gon.

Original proof of Erdős and Szekeres. The statement is trivial for $n \leq 3$. Let $L := R^3_2(n)$, so that $[L] \to (n)_2^3$. Let $V = \{s_0, \ldots, s_{L-1}\}$ be a set of L points in general position in \mathbb{R}^2. Let $S \in \binom{V}{4}$, and colour S blue if the points in S are in convex position, and red otherwise. By Theorem 4.3.1 there is a monochromatic subset M of V of size n. We have already seen in the happy ending problem that not all sets in $\binom{M}{4}$ can be red. Hence, all four-element subsets of M are in convex position, and it is easy to see that then all points in M must be in convex position.

Another proof. Let $L := R^3_2(n)$, so that $[L] \to (n)_2^3$. Let $V = \{s_0, \ldots, s_{L-1}\}$ be a set of ℓ points in general position in \mathbb{R}^2. Let $\{s_i, s_j, s_k\} \in \binom{V}{3}$ and assume without loss of generality that $i < j < k$. Colour this set according to the following rule:

- blue if going from s_i to s_j to s_k is a clockwise movement, and
- red otherwise.
4. RAMSEY THEORY

By Theorem 4.3.1, there is a monochromatic subset S of V of size n, say of colour blue (the other case is symmetric). Suppose for contradiction that $s_\ell \in S$ lies in the convex hull of $\{s_i, s_j, s_k\} \in (S \setminus \{s_\ell\})$. Without loss of generality, suppose that $i < j < k$ so that $\{s_i, s_j, s_k\}$ is coloured blue. Then $\{s_i, s_\ell, s_k\}$ is blue, so we have $i < \ell < k$. If $\ell < j$ then $i < \ell < j$ and the set $\{s_i, s_\ell, s_j\}$ should be coloured red, and if $\ell > j$ then $j < \ell < k$ and the set $\{s_j, s_\ell, s_k\}$ should be coloured red. In both cases we reached a contradiction. □

Exercises.

(36) Let (P, \leq) be a countably infinite partially ordered set. Then (P, \leq) either contains an infinite chain or an infinite antichain (see Exercise (8)).

(37) A generalisation of the previous exercise: prove that for any infinite directed graph there exists an infinite subset of the vertices that induces one of the following:

- a clique,
- a clique where additionally all vertices have loops,
- an independent set,
- loops at each vertex and otherwise no edges,
- a strict linear order,
- a weak linear order.

(38) For all $n, m \in \mathbb{N}$ there exists $\ell \in \mathbb{N}$ such that any directed graph of size at least ℓ contains a linear order of size n or an independent set of size m.

4.6. The Theorem of Hales-Jewett

One of the original motivations of the Hales-Jewett theorem [11] is an application for so-called positional games to show that certain games cannot end in a draw. The theorem became one of the most useful theorems in Ramsey theory. Graham, Rothschild, and Spencer in their classical textbook [10] write: “(The Hales-Jewett theorem) is a focal point from which many results can be derived and acts as a cornerstone for much of the more advanced work. Without this result, Ramsey theory would more properly be called Ramseyian theorems.”

4.6.1. Positional Games. A hypergraph is a pair (V, H) where

- V is a set (again, the elements of V are called the vertices), and
- $H \subseteq \mathcal{P}(V)$ is a set of subsets of V, called the (hyper-)edges.

A (strong) positional game (or a maker-maker game is given by a hypergraph (V, H) and played by two players, called W and S (there are obvious generalisations to positional n-player games). Player W starts the game and colours one of the vertices white. Then player S colours one of the other vertices black. They alternatingly continue to colour previously uncoloured vertices with their respective color until

- all of the vertices of one of the hyperedges are coloured with white, in which case W wins;
- all of the vertices of one of the hyperedges are coloured with black, in which case B wins;
- all vertices are coloured without a monochromatic hyperedge, in which case the game ends in a draw.

This game is a finite perfect information zero-sum 2-player game, so either one of the players has a winning strategy, or both players can force a draw. The most famous of such positional games is Tic-Tac-Toe, where the hypergraph has the vertices $[3]^2$ (a three by three grid) and the hyperedges are the 3 rows, the 3 columns, and the two 2 diagonals.
4.6. THE THEOREM OF HALES-JEWETT

The following famous idea has already been used by Nash around 1940, and is called strategy stealing argument. We write $W(x)$ (and $B(x)$) if x has been coloured white (black) during the game.

Theorem 4.6.1. Let $(V; H)$ be a strong positional game. Then the player B who plays second cannot have a winning strategy.

Proof. Suppose for contradiction that B has a winning strategy σ. We now specify a strategy for W. Arbitrarily select $x \in V$ (but don’t colour it yet!). Let $y \in V$ be the response of B according to ρ if W would have played x. Then player W plays y. By assumption, B can force a win for the game where $W(x)$ and $B(y)$ and where it is W’s turn. Symmetrically, W can force a win if $W(y)$ and if it is B’s turn. But then, W can force a win if $W(y)$ and if it is B’s turn even if x has not been coloured (since additionally coloured vertices can only help B to win). This contradicts that fact that B has a winning strategy for the game W has just started against σ (where $W(x)$ and it is B’s turn). □

We have here a real proof by contradiction; note that from the proof we gain no insight how B should play in order to force a draw or to win. In the case of Tic-Tac-Toe, it can be checked by an elementary case distinction that both players can force a draw. We will not go into the details here but rather discuss the obvious generalisation of Tic-Tac-Toe where we play on a $n \times n$ board, rather than a 3×3 board. Formally, the game $n \times n$ is the positional game whose vertices are the grid $[n] \times [n]$ and where we have n hyperedges of size n for the n rows, the n hyperedges of size n for the n columns, and two diagonals.

To decide whether B can force a draw there is a powerful condition that sometimes works. The idea even has a (Japanese) name in the world of go: B tries to cover each hyperedge with a pair of vertices that are miai.

Definition 4.6.2. A pairing strategy for $(V; H)$ is given by a matching M on the complete graph with vertices V such that every hyperedge contains at least one edge from M.

For example, the following represents a pairing strategy for the game 5×5: entries with the same number are joint by a matching edge.

$$
\begin{pmatrix}
1 & 2 & 3 & 2 & 4 \\
5 & 7 & 7 & 8 & 9 \\
10 & 6 & * & 8 & 10 \\
5 & 6 & 11 & 11 & 9 \\
4 & 12 & 3 & 12 & 1 \\
\end{pmatrix}
$$

Proposition 4.6.3. If $(V; H)$ has a pairing strategy, then B can force a draw.

Proof. If W plays one of the endpoints of a matching edge, then B responds with the other end. Since every hyperedge is covered by some hyperedge, none of the hyperedges will be coloured monochromatically, and the game ends in a draw. □

Note that there is no pairing strategy for the game 4×4: there are 10 hyperedges, but only 16 vertices; hence, at most 8 hyperedges can be covered by some matching.

Exercises.

(39) Prove that B can force a draw in the game 4×4.

Hint. Check that for each of the possible first moves of W there is a response for B such that B has a pairing strategy.
In the following, we will be interested in a d-dimensional generalisation of the game $n \times n$, which is called the n^d game. The vertex set in this game is $[n]^d$. The hyperedges are of size n and defined as follows: $\{\alpha_1, \ldots, \alpha_n\}$ with $\alpha_i = (a_{i,1}, \ldots, a_{i,d}) \in [n]^d$ is a hyperedge if for each $j \leq d$ the tuple $(a_{1,j}, \ldots, a_{n,j})$ has one of the following forms:

\[
(1, \ldots, 1) \\
(2, \ldots, 2) \\
\ldots \\
(n, \ldots, n) \\
(n, n-1, \ldots, 1) \\
(1, 2, \ldots, n)
\]

If $n = 4, d = 3$ then there are for instance the hyperedges

\[
\{113, 112, 111, 110\}, \\
\{020, 121, 222, 323\}, \text{ and} \\
\{031, 131, 231, 331\}.
\]

Sometimes, pairing strategies are guaranteed to exist because of the marriage theorem of Hall, in the form of Theorem 1.5.3. For example, we have the following.

Lemma 4.6.4. Let $(V; H)$ be a hypergraph and let s be the size of the smallest hyperedge in H. Let $g := \max_{x \in V} |\{h \in H \mid x \in h\}|$. If $s \geq 2g$ then B has a pairing strategy in the game $(V; H)$.

Proof. Let \mathcal{F} be the family of finite subsets where we add each hyperedge from H twice. Note that pairing strategies in the game on (V, H) are in one-to-one correspondence to transversals of \mathcal{F}: by construction, each hyperedge will have two distinct representatives a, b in a transversal, and $\{a, b\}$ will be part of the desired matching for the pairing strategy. Theorem 1.5.3 states that it suffices to verify the marriage condition for \mathcal{F}. Let $S \subseteq \mathcal{F}$.

\[
|N(S)| = \left| \bigcup_{A \in S} A \right| \quad \text{(by the definition of G)} \\
\geq s|S| \\
\geq |S| \quad \text{ (since $s \geq 2g$)}.
\]

The inequality (\ast) holds since we have at least $s|S|$ edges leaving S, and each vertex in $\bigcup_{A \in S} A$ has at most $2g$ neighbours in S. \qed

Corollary 4.6.5. For $n \geq 3^d - 1$ both players can force a draw in the game n^d.

Proof. Note that any point is contained in at most $(3^d - 1)/2$ many hyperedges (and this bound is achieved for odd k at the center point): for each coordinate, we have to decide whether the entries are constant, increasing, or decreasing. Not all constants can be constant, so we have to subtract one. Finally, when we flip all increasing coordinates to decreasing ones, and vice versa, we obtain the same hyperedge, so we divide by 2. Hence, if $n \geq 3^d - 1$, then Lemma 4.6.1 applies and implies the statement. \qed

The result in the following section shows that for every $n \in \mathbb{N}$ there exists a $d \in \mathbb{N}$ so that $[n]^d$ cannot end in a draw, and hence, by Theorem 4.6.1 W has a winning strategy.
4.6.2. The Hales-Jewett Theorem. In the Hales-Jewett theorem, we color the elements of \([m]^d\) with \(c\) colours, and we look for a monochromatic combinatorial line.

Definition 4.6.6. A combinatorial line in \([m]^d\) is a set of points \(\{\alpha_1, \ldots, \alpha_k\} \subseteq [m]^d\) with \(\alpha_i = (a_{i,1}, \ldots, a_{i,d}) \in [m]^d\) for all \(i \leq k\), such that for each \(j \leq d\) we have that either

\[
a_{1,j} = \cdots = a_{m,j}
\]

or

\[
a_{i,j} = i.
\]

Hence, combinatorial lines are defined as the hyperedges \(\{\alpha_1, \ldots, \alpha_k\}\) of the game \(m^d\) with the exception that we no longer have the option that \(\alpha_{1,j} = m + 1 - j\). So there are fewer combinatorial lines; for example in the game Tic-Tac-Toe, we have the hyperedge \(\{(0,2),(1,1),(2,0)\}\) which is not a combinatorial line.

Combinatorial lines can be represented as words over the alphabet \([m] \cup \{\ast\}\) with at least one occurrence of \(\ast\). The letter \(i\) at the \(j\)-th position indicates that in the combinatorial line

\[
\{(a_{1,1}, \ldots, a_{1,d}), \ldots, (a_{m,1}, \ldots, a_{m,d})\}
\]

we have \(a_{i,j} = \cdots = a_{j,d} = i\), and the letter \(\ast\) at the \(j\)-th position indicates that \(a_{j,i} = i\) for all \(i \in \{1, \ldots, d\}\). It follows that the number of combinatorial lines in \([m]^d\) is \((m + 1)^d - m^d\).

Theorem 4.6.7. For all \(c, m \in \mathbb{N}\) there exists \(d = HJ(c,m) \in \mathbb{N}\) such that for all colourings \(f: [m]^d \to [c]\) there exists a monochromatic combinatorial line in \([m]^d\).

For example, if \(c = 2\) and \(m = 2\) then \(HJ(c,m) = 2\) is the smallest \(d \in \mathbb{N}\) that satisfies the statement of the theorem.

Corollary 4.6.8. For every \(n \in \mathbb{N}\) there exists a \(d \in \mathbb{N}\) such that player \(W\) wins the game \(n^d\).

Proof. Choosing \(d = HJ(c,n)\), the game \(n^d\) cannot end in a draw since every combinatorial line in \([n]^d\) is a hyperedge in the game \(n^d\). Since player \(S\) cannot have a winning strategy by Theorem 4.6.1 player \(W\) must have a winning strategy.

4.6.3. Application: van der Waerden’s theorem. An arithmetic progression of length \(m\) \((m\text{-AP})\) is a sequence \((a_0, a_1, \ldots, a_{m-1})\) of integers of the form

\[
a_0, a_0 + b, a_0 + 2b, \ldots, a_0 + (m-1)b.
\]

Theorem 4.6.9 (van der Waerden, 1927). For all \(m, c \in \mathbb{N}\) there is an \(w = W(m,c) \in \mathbb{N}\) such that for every colouring

\[
\chi: \{1, \ldots, w\} \to [c]
\]

there exists a monochromatic arithmetic progression of length \(m\).

Proof. Let \(d = HJ(m,c)\), and define \(w := (m - 1)d + 1\). Let \(f: [m]^d \to \{1, \ldots, w\}\) be the map that sends \((p_1, \ldots, p_d)\) to \(p_1 + \cdots + p_d + 1\). Given a \(c\)-colouring \(\chi\) of \(\{1, \ldots, w\}\), define a \(c\)-colouring \(\chi'\) of \([m]^d\) by setting \(\chi'(p) := \chi(f(p))\) for \(p \in [m]^d\). By the theorem of Hales-Jewett (Theorem 4.6.7), there exists a monochromatic line \(q = (q_0, \ldots, q_{m-1})\) in \([m]^d\). We claim that \(f(q_0), \ldots, f(q_{m-1})\) is an \(m\text{-AP}\). Let \(a_0 := f(q_0)\) and let \(b\) be the number of \(\ast\)'s in the word that corresponds to the line \(q\). Then \(f(q_i) = a_0 + ib\) for \(i \in [m]\). So we found the monochromatic \(m\text{-AP}\)

\[
a_0, a_0 + b, \ldots, a_0 + (m-1)b.
\]
4.6.4. Application: monochromatic copies of graphs.

Theorem 4.6.10. For every $c \in \mathbb{N}$ and every finite graph H there exists a graph G such that for every colouring $\chi : V(G) \to [c]$ there exists a monochromatic subgraph H' of G which is isomorphic to H.

Proof. Let $m := |V(H)|$ and choose $d = HJ(c, m)$. Let G be the graph with vertex set $[m]^d$ where the edges are defined in such a way that for each combinatorial line \{$(\alpha_1, \ldots, \alpha_1, \ldots), \ldots, (\alpha_m, 1, \ldots, \alpha_m, d)$\} in $[m]^d$ induces a copy of H: this is well-defined since any two combinatorial lines intersect in at most one element of $[m]^d$. Clearly, monochromatic lines in $[m]^d$ then correspond to monochromatic copies of H in G. \qed

The following exercises follow pretty much the same idea.

Exercises.

(40) Prove that for every $c \in \mathbb{N}$ and every finite metric space M there exists a metric space L such that for every colouring $\chi : L \to [c]$ there exists a monochromatic subspace of L which is isometric to M.

(41) Prove that for every $c \in \mathbb{N}$ and every finite partially ordered set (M, \leq) there exists a partially ordered set (L, \leq) such that for every colouring $\chi : M \to [c]$ there exists a monochromatic subposet of (L, \leq) which is isomorphic to (M, \leq).

(42) Prove that for every $c \in \mathbb{N}$ and every finite tournament S there exists a finite tournament T such that for every colouring $\chi : V(T) \to [c]$ there exists a monochromatic subtournament of T which is isomorphic to S.

Remark. One of the important directions into which Ramsey theory has developed is that instead of just colouring single elements as in the theorem of Hales-Jewett and its applications that we have seen above, we colour entire copies of of some fixed (‘small’) structure S in some (‘large’) structure L. The goal is to find conditions that imply that no matter how the copies of S in L are coloured, we find a copy of some (‘medium-size’) structure M in S such that all copies of S in M have the same colour. This is similar to the statement of Ramsey’s theorem, except that for Ramsey’s theorem there were just sets and subsets, rather than structures and substructures. For more on this topic, we refer to [21].

Another important topic in Ramsey theory is the question how big structures need to be so that infinite monochromatic objects can be found (see Appendix C.3 for the various ‘sizes of infinity’ that we might want to color/find).
CHAPTER 5

Generating Functions

In combinatorics, we often want to count the objects of size n in a given set of combinatorial structures. For example, we want to count the number of graphs, trees, etc. that have certain properties, as a function in the number of vertices. Or we would like to count the number of words in some language depending on the number of letters in the word. There are numerous reasons why we might want to count. One important application is the probabilistic method where probability theory is mostly a fancy (and powerful!) language for arguments that are essentially counting arguments. Another application is in theoretical computer science, where we are sometimes interested in typical properties of large random objects (the large random objects might actually be the input to your computer program). So we sometimes might want to efficiently sample large combinatorial objects from some distribution; efficient counting is very important in this context. The corresponding research field is called enumerative combinatorics.

This section does not attempt to give an overview of enumerative combinatorics, which would be a challenging task, but rather to highlight one very powerful method in enumerative combinatorics, namely the usage of generating functions. This method has strong links with algebra, but also with analysis of complex functions (in German Funktionentheorie); the respective research area is often called analytic combinatorics. This section is inspired by the famous introduction of Wilf with the title generating-functionology [29] (which is suited for mathematics undergraduate students) and the monumental [8]. However, we also try to be self-contained in what concerns the facts concerning the fundamental link between power series and complex-valued functions.

5.1. Motivating Generating Functions

Suppose we have a problem whose answer is a sequence of numbers, a_0, a_1, a_2, \ldots. Ideally, we would like to obtain a simple formula for the n-th number, something like $a_n = 2n^2 + 7n - 2$, for example. But sometimes, such a simple formula might simply not exist. In such situations we would still like to know whether the n-th number can be somehow computed (as efficiently as possible!), or we might want to know the asymptotic growth of the a_n, or good and simple bounds on the asymptotic growth. Or you might want to prove that two sequences are equal. For all these possible tasks (and many more) generating functions might be the right method.

Example 5.1.1. The Fibonacci numbers f_0, f_1, f_2, \ldots are inductively defined as follows: $f_0 = 0$, $f_1 = 1$, and for $n \geq 1$ we have

$$f_{n+1} := f_n + f_{n-1}.$$

The sequence begins with

$$0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$$
Using generating functions, one can prove that for every \(n \in \mathbb{N} \)
\[
f_n = \frac{1}{\sqrt{5}}(r_+^n - r_-^n). \tag{21}
\]
where \(r_+ := (1 + \sqrt{5})/2 \) is the golden ratio (sectio aurea, proportio divina) and \(r_- := (1 - \sqrt{5})/2 \). By any means, this is a formula that is easy to compute (by hand, or efficiently even for gigantic numbers \(n \) by a computer). Note that for large \(n \), since \(|r_-| < 1\), the second term \(r_-^n/\sqrt{5} \) in (21) will be tiny when compared to the first. So, in particular,
\[
f_n \sim \left(\frac{1 + \sqrt{5}}{2}\right)^n.
\]

5.2. The Idea

We start with a very simple example to illustrate the idea. The Fibonacci numbers and Catalan numbers will be more interesting examples that follow later. A formal treatment of the involved tool, namely formal power series, and more advanced analytic techniques follow later.

Let \(a_0, a_1, \ldots \) be the integer sequence given by
\[
a_0 := 0, \quad a_{n+1} := 2a_n + 1.
\]
The sequence starts with 0, 1, 3, 7, 15, 31, \ldots In this example it is still possible to somehow guess an explicit formula for the sequence and then prove it by induction on \(n \). This is not our approach (the guess and check approach might be quite tough in more advanced examples -- would you have guessed the answer in Example 5.1.1?).

Step 1: turn the sequence into a power series \(A(x) \). The starting point of the approach via generating functions is to turn the sequence \((a_n)_{n \in \mathbb{N}}\) into a single object, namely the (formal) power series
\[
\sum_{n \in \mathbb{N}} a_n x^n \tag{22}
\]
where \(x \) is a variable. This object has two possible interpretations:

- The formal/syntactic perspective, where (5.5) is just viewed as a formal power series. More on that in Section 5.3.
- A function from a subset of \(\mathbb{C} \) to \(\mathbb{C} \), mapping \(x \) to \(\sum_{n \in \mathbb{N}} a_n x^n \). More on that in Section 5.5.

Step 2: translate the given data into statements about \(A(x) \). Our next step is the interpretation of the recurrence relation in terms of (22). Multiplying both sides of the recurrence relation by \(x^n \), and then summing over all \(n \in \mathbb{N} \) (for all of them the recurrence relation is true) we obtain
\[
\sum_{n \geq 0} a_{n+1} x^n = \sum_{n \geq 0} (2a_n + 1) x^n. \tag{23}
\]
On the left-hand-side of (23), we have
\[
\sum_{n \geq 0} a_{n+1} x^n = \frac{\sum_{n \geq 0} a_{n+1} x^{n+1}}{x} + \frac{a_0 x^0}{x} \bigg|_{x=0} = A(x). \quad \frac{1}{1-x} = 1 + x + x^2 + \cdots = \sum_{n \in \mathbb{N}} x^n. \tag{24}
\]

To simplify the right-hand-side, recall that (this will be revisited in Section 5.3)
\[
1 + x + x^2 + \cdots = \sum_{n \in \mathbb{N}} x^n.
\]
5.3. FORMAL POWER SERIES

It is the result of performing the (infinite) polynomial division
\[
\begin{array}{c|c}
1 & 1 - x \\
1 & -x \\
x & -x^2 \\
x^2 & -x^3 \\
& \ldots
\end{array}
\]

: \quad (1 - x) = 1 + x + x^2 + \cdots

Hence, the right-hand-side of (23) can be rewritten as
\[
\sum_{n \geq 0} 2a_n x^n + \sum_{n \geq 0} x^n = 2A(x) + \frac{1}{1-x}.
\]

(25)

Step 3: obtain a simple expression for \(A(x) \) by algebraic manipulations.

If we now put the left-hand side expression and the right hand side expression together and obtain
\[\frac{A(x)}{x} = 2A(x) + \frac{1}{1-x}\]

Solving for \(A(x) \) we obtain
\[A(x) = \frac{x}{(1-x)(1-2x)}.
\]

Step 4: read off the coefficients. In general, if \(B(x) \) is a power series, then we write \([x^n]B(x)\) for the coefficient of \(x^n \). In our case, we have \([x^n]A(x) = a_n\). The value of \(a_n \) for a given specific value of \(n \) can be computed by performing a polynomial division for \(n \) steps until we know \(a_n \).

To obtain a formula for \(a_n \), we first compute the partial fraction decomposition of \(A(x) \). That is, we want to write the fraction
\[\frac{P}{1-x} + \frac{Q}{1-2x}\]

for appropriate polynomials \(P \) and \(Q \). In our case, it is possible to guess \(P = -x \) and \(Q = 2x \) (a general method to find \(P \) and \(Q \) will be revisited in Section 5.3.5):
\[
\frac{-x}{1-x} + \frac{2x}{1-2x} = \frac{x - (1-2x) + 2(1-x)}{(1-x)(1-2x)} = \frac{x}{(1-x)(1-2x)}.
\]

We have already seen in (24) that \([x^n] \frac{1}{1-x} = 1\) for all \(n \in \mathbb{N} \), and similarly
\[
[x^n] \frac{1}{1-2x} = 2^n.
\]

(26)

Putting these together, we obtain that
\[a_n = \frac{[x^n]A(x)}{[x^{n-1}]} \left(\frac{\frac{2}{1-2x} - \frac{1}{1-x}}{1} \right) = 2 \cdot 2^{n-1} - 1 = 2^n - 1.
\]

5.3. Formal Power Series

To introduce formal power series, we need a commutative ring \(R \) (such as \(\mathbb{Z} \), \(\mathbb{Q} \), \(\mathbb{R} \), and \(\mathbb{C} \)) and a formal variable, \(x \). We first define the ring of formal power series \(R[[x]] \) by defining the elements of \(R[[x]] \) and how to add and how to multiply elements of \(R[[x]] \).
5. GENERATING FUNCTIONS

5.3.1. Defining power series. We define $R[[x]]$ as the set of infinite sequences of elements of R, indexed by the natural numbers \mathbb{N} (including 0; otherwise, we write \mathbb{N}^+). Let $(a_i)_{i \in \mathbb{N}}$ and $(b_i)_{i \in \mathbb{N}}$ be two elements of $R[[x]]$. We define

$$(a_i)_{i \in \mathbb{N}} + (b_i)_{i \in \mathbb{N}} := (a_i + b_i)_{i \in \mathbb{N}}$$

$$(a_i)_{i \in \mathbb{N}} \cdot (b_i)_{i \in \mathbb{N}} := \sum_{k=0}^{n} (a_k b_{n-k})_{n \in \mathbb{N}}$$

It is straightforward to verify that $R[[x]]$ with these operations forms a ring. Clearly, the multiplicative identity of elements b_{i} is given in Section 5.6). So the number of all objects of size i have to take an object of size n in some class of combinatorial objects C, and we have to take an object of size $n - i$ from some other class B and put them together in some unique way (a concrete example of such a class is given in Section 5.6). So the number of all objects of size n equals $\sum_{i=0}^{n} a_i b_{n-i}$, where a_i,b_i is the number of objects of size i in A and B, respectively. And this sum is precisely the sum that appears in the definition of the Cauchy product.

We view polynomials over R with one variable x as a subset of $R[[x]]$, identifying $(a_0, a_1, \ldots, a_n, 0, 0, \ldots)$ with $\sum_{i=0}^{n} a_i x^i$. We adopt a similar notation for the general case: instead of $(a_i)_{i \in \mathbb{N}}$, we write $\sum_{n=0}^{\infty} a_n x^n$. If $A(x) = \sum_{n=0}^{\infty} a_n x^n \in R[[x]]$ we also write $[x^n]A(x)$ instead of a_n.

Remark 5.3.1. Of course, we can consider formal power series $S[[x]]$ where $S = R[[y]]$ itself is a ring of formal power series. If we iterate this n times with the formal variables x_1, \ldots, x_n, starting with the ring R, we directly use the obvious notation $R[[x_1, \ldots, x_n]]$ for the resulting object.

5.3.2. The reciprocal power series. A formal power series $B(x)$ is a reciprocal of $A(x)$ if $A(x)B(x) = 1$; that is, $B(x)$ is the multiplicative inverse of $A(x)$ in the ring $R[[x]]$. However, we prefer the term ‘reciprocal’ since the ‘inverse power series’ is used for something else in Section 5.3.3. For an example of a power series without a reciprocal, take $R = \mathbb{Z}$ and consider $2 \in R[[x]] \subseteq R[[y]]$.

Lemma 5.3.2. A series $A(x) \in R[[x]]$ has a reciprocal in $R[[x]]$ if and only if $[x^0]A(x)$ is invertible in R. In this case the reciprocal is unique.

Proof. If $A(x) = \sum_{n=0}^{\infty} a_n x^n$ has the reciprocal $B(x) = \sum_{n=0}^{\infty} b_n x^n \in R[[x]]$, then

$$[x^0](A(x) \cdot B(x)) = a_0 b_0 = [x^0](1) = 1$$

and hence a_0 has the inverse b_0 in R. Moreover, from the definition of $A(x)B(x) = 1$ it follows that for $n \geq 1$ we have $\sum_{k=0}^{n} a_k b_{n-k} = 0$, which implies that

$$b_n = -\frac{1}{a_0} \sum_{k \geq 1} a_k b_{n-k}$$

which, by induction, defines b_1, b_2, \ldots uniquely.

Conversely, if a_0 has the inverse b_0 in R, then we can determine b_1, b_2, \ldots from (27) and the series $B(x) := \sum_{n \in \mathbb{N}} b_n x^n$ is the reciprocal series for $A(x)$. \Box

If $A(x)$ has a reciprocal $B(x)$, then we also write $A(x)^{-1}$ for $B(x)$. An important special case is the identity

$$(1 - cx)^{-1} = \sum_{n \in \mathbb{N}} c^n x^n$$
5.3. Formal power series

which we have already encountered in (24) for \(c = 1 \) and later in for \(c = 2 \) in (26).

Here,

\[
[x^n](1 - cx)^{-1} = -\sum_{i=1}^{n} a_i b_{n-i} \quad \text{(by (27))}
\]

\[
= -a_1 b_{n-1} \quad \text{(since } a_i = 0 \text{ for } i > 1) \\
= c^n \quad \text{(since } a_1 = -c \text{ and inductively } b_{n-1} = c^{n-1}).
\]

5.3.3. The derived power series. The derivative of a formal power series

\[A(x) = \sum_{n \in \mathbb{N}} a_n x^n \]

is the series

\[A'(x) := \sum_{n \in \mathbb{N}^+} n a_n x^{n-1}. \]

The usual rules for the derivative also hold in the formal setting:

\[
(A(x) + B(x))' = A'(x) + B'(x) \\
(A(x)B(x))' = A'(x)B(x) + A(x)B'(x) \quad \text{(Leibniz rule)}
\]

Proposition 5.3.3. Let \(A \in R[[x]] \) be such that \(A'(x) = 0 \). Then \(A(x) = c \) for some \(c \in R \).

Proof. \(A'(x) = 0 \) means precisely that \([x^n] = 0 \) for all \(n \in \mathbb{N}^+ \).

Recall from Section 3.2.2 that \(\exp(x) \) was defined as the formal power series

\[
\sum_{n \in \mathbb{N}} \frac{x^n}{n!};
\]

note that this definition makes sense for every ring \(R \).

Proposition 5.3.4. Let \(A \in R[[x]] \) be such that \(A'(x) = A(x) \). Then \(A(x) = c \exp(x) \) for some \(c \in R \).

Proof. If \(A' = A \) then \(a_n := [x^n]A = [x^n]A' \) and hence \((n+1)a_{n+1} = a_n \), for all \(n \geq 0 \). Therefore, \(a_{n+1} = \frac{a_n}{n+1} \), and by induction on \(n \) we obtain that \(a_n = \frac{a_0}{n!} \), so \(A(x) = a_0 \exp(x) \).

Integration is defined analogously to integration.

Exercises.

(43) Prove the Leibniz rule \((29)\) for the derivative of products of formal power series.

5.3.4. Composing power series. Let \(A(x) = \sum_{n=1}^{\infty} a_n x^n \) be a polynomial over the ring \(R \). As with polynomials \(B(x) \in R[x] \), we can define the composition of \(A(x) \) with a formal power series \(B(x) \in R[[x]] \) by

\[A(B(x)) := \sum_{n=0}^{\infty} a_n (B(x))^n. \]

Example 5.3.5. Clearly, \(B(0) := \sum_{n=0}^{\infty} a_n 0^n = a_0 \). More generally, we can recover \(a_n \) as \(B^{(n)}(0) \) using the formal derivative from the previous section and composition with \(0 \) as follows. To denote higher derivatives, we define \(A^{(0)}(x) := A(x) \) and \(A^{(n+1)}(x) := (A^n(x))' \) for \(n \in \mathbb{N} \). It is now easy to check that

\[a_n = \frac{A^{(n)}(0)}{n!}. \]
5. GENERATING FUNCTIONS

Now suppose that \(A(x) \) is in \(R[[x]] \) instead of \(R[x] \). We would like to use the same definition, but we need that \([x^0]B(x) = 0 \) because then
\[
A(B(x)) = \sum_{n \in \mathbb{N}} a_n(B(x))^n
\]
can be given formal meaning by defining
\[
[a^n]A(B(x)) := \sum_{k \in \mathbb{N}, j_1, \ldots, j_k \in \mathbb{N}^+, j_1 + \cdots + j_k = n} a_k b_{j_1} \cdots b_{j_k}.
\tag{31}
\]
We also write \((A \circ B)(x)\) instead of \(A(B(x))\).

Example 5.3.6. The expression \(\exp(\exp(x) - 1) \) is a well-defined formal power series since \([x^0]\exp(\exp(x) - 1) = [x^0] \sum_{n \in \mathbb{N}} x^n n^{-1} = 1 - 1 = 0 \). On the other hand, \(\exp(\exp(x)) \) is not defined, at least not by the general definition of composition of formal power series.

Remark 5.3.7. So we now have defined composition in two different situations: polynomials \(A \in K[x] \) with arbitrary power series \(B \in K[[x]] \), or arbitrary power series \(A \in K[[x]] \) with power series \(B \in K[[x]] \) having constant term 0. We mention that using the notion of summable power series allows for a common generalisation of the two situations [29].

Composition of power series is of great use in combinatorial enumeration: often, an object of size \(n \) in a class of combinatorial objects \(C \) is obtained in a unique way by taking a structure with \(k \) elements from one class \(A \), and by replacing each element by an non-empty object \(O_i \) from some other class \(B \) such that the sizes of \(O_1, \ldots, O_k \) add up to \(n \). Hence, the number of objects of size \(n \) in \(C \) equals
\[
\sum_{k \in \mathbb{N}, j_1, \ldots, j_k \in \mathbb{N}^+, j_1 + \cdots + j_k = n} a_k b_{j_1} \cdots b_{j_k}.
\]

As in calculus, we have the **chain rule** for computing the derivative of the composition \(A(B(x)) \):
\[
A(B(x))' = A'(B(x))B'(x).
\tag{32}
\]
An inverse of a series \(A(x) \), if it exists, is a power series \(B(x) \) such that
\[
A(B(x)) = B(A(x)) = x.
\]

Proposition 5.3.8. Let \(A \in R[[x]] \) be such that \([x^0]A(x) = 0 \). Then \(A(x) \) has an inverse if and only if \([x^1]A(x) \) has a (multiplicative) inverse in \(R \). In this case the inverse is unique.

Proof. Suppose that \(A(x) = \sum_{n \in \mathbb{N}} a_n x^n \) has the inverse \(B(x) = \sum_{n \in \mathbb{N}} b_n x^n \) in \(R[[x]] \). Let \(r, s \in \mathbb{N} \) be smallest such that \(a_r \not= 0 \) and \(b_s \not= 0 \). Then the smallest \(n \) such that \([x^n]A(B(x)) \neq 0 \) equals \(rs \), and since \(A(B(x)) = x \) we must have that \(rs = n = 1 \), and hence \(r = s = 1 \). Moreover, \(a_1 b_1 = 1 \), and hence \([x^1]A(x) = a_1 \) is invertible. Moreover, \(b_1 \in R \) is uniquely determined. The identity \(A(B(x)) = x \) and (31) implies that
\[
[x^2]A(B(x)) = a_1 b_2 + a_2 b_1^2 = 0
\]
and hence \(b_2 \) is uniquely determined in terms of the \(A(x) \) and \(b_1 \). Likewise,
\[
[x^3]A(B(x)) = a_1 b_3 + 2a_2 b_1 b_2 + a_3 b_1^3 = 0
\]
and hence \(b_3 \) is uniquely determined in terms of the \(A(x) \) and \(b_1, b_2 \). Similarly, by induction, \(b_n \) is uniquely determined for all \(n \in \mathbb{N} \).

Conversely, if \(a_1 \) has the inverse \(b_1 \) in \(R \), then we choose \(b_0 = 0 \) and \(b_2, b_3, \ldots \) as above and then the series \(B(x) := \sum_{n \in \mathbb{N}} b_n x^n \) is the inverse series for \(A(x) \). \(\square \)
Note that the proof also shows that if \(A(B(x)) = x \), then this implies that \(B(A(x)) = x \). If \(R \) is a field of characteristic 0 one can use the so-called Lagrange inversion formula to compute the \(b_i \)'s explicitly. This will be treated in Section 5.8.2.

Exercises.

(44) Prove the chain rule (32).

5.3.5. The partial fraction decomposition. Quotients \(\frac{p(x)}{q(x)} \) of two polynomials \(p,q \in R[x] \) are called rational functions. A partial fraction decomposition of a rational function is an expression of the form

\[
\frac{p(x)}{q(x)} = \sum_{j=1}^{k} \frac{p_j(x)}{q_j(x)}
\]

where \(q_1,\ldots,q_k \) are factors of \(q \) that have smaller degree than \(q \). In the full decomposition (formally defined in Theorem 5.3.9) each of the \(q_j \) is irreducible.

For getting the idea why such a decomposition exists, suppose that \(q = q_1q_2 \in K[x] \) for some field \(K \) such that \(q_1 \) and \(q_2 \) are coprime. By Bézout’s theorem, which applies since \(K[x] \) is a principal ideal domain (German ‘Hauptidealring’), there are \(c,d \in K[x] \) such that \(cq_1 + dq_2 = 1 \) (recall that if \(K \) is the rational numbers then \(c \) and \(d \) can be found efficiently using the extended Euclidean algorithm). Thus,

\[
\frac{1}{q} = \frac{cq_1 + dq_2}{q_1q_2} = \frac{c}{q_2} + \frac{d}{q_1}.
\]

Hence,

\[
\frac{p}{q} = \frac{cp}{q_2} + \frac{dp}{q_1}.
\]

Following these ideas, one can show the following.

Theorem 5.3.9. Let \(K \) be a field and let \(p,q \in K[x] \). Write \(q \) as a product of powers of distinct irreducible polynomials, \(q = \prod_{i=1}^{k} q_i^{n_i} \). Then there are unique polynomials \(b,a_{1,1},\ldots,a_{1,n_1},\ldots,a_{k,1},\ldots,a_{k,n_k} \in K[x] \) such that the degree of \(a_{i,j} \) is smaller than the degree of \(p_i \) and

\[
\frac{p}{q} = b + \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{a_{i,j}}{q_i}
\]

which is called the full partial fraction decomposition of \(\frac{p}{q} \). If the degree of \(f \) is smaller than the degree of \(g \), then \(b = 0 \).

5.3.6. The Fibonacci numbers. We now apply the generating function method to the Fibonacci numbers (Example 5.1.1). The first step is automatic: we turn the sequence \(f_0,f_1,f_2,\ldots \) into the generating function

\[
F(x) := \sum_{n \in \mathbb{N}} f_n x^n.
\]

The second step is to express the recurrence relation

\[
f_{n+1} = f_n + f_{n-1}
\]
in terms of the generating function. Multiplying the left hand side by \(x^n \) and summing over \(n \geq 1 \) we obtain (using that \(f_0 = 0 \) and \(f_1 = 1 \)):

\[
\sum_{n\in\mathbb{N}^+} f_{n+1}x^n = \sum_{n\in\mathbb{N}^+} f_{n+1}x^{n+1} \quad \frac{x}{x} = \sum_{n\geq2} f_nx^n + x - x = \frac{F(x) - x}{x}.
\]

Doing the same on the right hand side we get (using that \(f_0 = 0 \))

\[
\sum_{n\in\mathbb{N}^+} f_nx^n + \sum_{n\in\mathbb{N}^+} f_{n-1}x^n = F(x) + x \sum_{n\in\mathbb{N}^+} f_{n-1}x^{n-1}
= F(x) + x \sum_{n\in\mathbb{N}} f_nx^n
= F(x) + xF(x).
\]

It follows that \(\frac{F(x) - x}{x} = F(x) + xF(x) \). In the third step we solve the equation for \(F(x) \), and obtain

\[
F(x) = \frac{x}{1 - x - x^2}.
\]

In the fourth step we try to get a formula for the coefficients of \(F(x) \). As in our initial example in Section 5.2, we compute the partial fraction decomposition of \(F(x) \). First, we factor the denominator: \(1 - x - x^2 \) has the roots

\[
r_{\pm} := \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = (1 \pm \sqrt{5})/2
\]

and we obtain

\[
(1 - r_-x)(1 - r_+x) = 1 - (r_+ + r_-)x + (r_-r_+)x^2 = 1 - x - x^2.
\]

To find the partial fraction expansion, we have to find \(a, b \in K[x] \) such that

\[
\frac{x}{(1 - r_-x)(1 - r_+x)} = \frac{a}{1 - r_-x} + \frac{b}{1 - r_+x}.
\]

To find \(a, b \) we rewrite

\[
\frac{a}{1 - r_-x} + \frac{b}{1 - r_+x} = \frac{(1 - r_+x)a + (1 - r_-)b}{(1 - r_-x)(1 - r_+x)}
= \frac{(a + b) - (r_-b - r_+a)x}{(1 - r_-x)(1 - r_+x)};
\]

so we must have \(a + b = 0 \) and \(r_-b - r_+a = 1 \). Substituting the first equation into the second we obtain \(r_-a - r_+(-a) = 1 \) and hence \(b = \frac{1}{r_+ - r_-} \) and \(b = -a \). Therefore,

\[
\frac{x}{1 - x - x^2} = \frac{ax}{(1 - r_+x)(1 - r_-x)} + \frac{bx}{1 - r_+x}
= \frac{1}{r_+ - r_-} \left(\frac{1}{1 - r_+x} - \frac{1}{1 - r_-x} \right)
= \frac{1}{\sqrt{5}} \left(\sum_{n\in\mathbb{N}} r_+^nx^n - \sum_{n\in\mathbb{N}} r_-^nx^n \right).
\]

Therefore, \(f_n = \frac{1}{\sqrt{5}} (r_+^n - r_-^n) \) as announced earlier in (21).
5.4. Regular Languages

In this section we study how to compute the number of words of length \(n \) in a given regular language. For example: how many ASCII texts of length 400 are there that contain the word ‘combinatorics’, but not the word ‘generating function’? The answer to this question and other questions of this type can be easily computed.

5.4.1. Deterministic finite automata. A deterministic finite automaton (DFA) \(A \) is a 5-tuple

\[
A = (Q, \Sigma, \delta, s, F)
\]

consisting of

- a finite set of states \(Q \);
- a finite set of input symbols called the alphabet \(\Sigma \);
- a transition function \(\delta: Q \times \Sigma \rightarrow Q \);
- an initial or start state \(s \in Q \);
- a set of accepting states \(F \subseteq Q \).

Let \(w = (w_1, \ldots, w_n) \in \Sigma^n \) be a word (also called string; see Appendix B) of length \(n \) over the alphabet \(\Sigma \). Then \(A \) accepts \(w \) if there exists a sequence of states \(s = s_0, s_1, s_2, \ldots, s_n \) such that \(s_{i+1} = \delta(s_i, w_{i+1}) \) and \(s_n \in F \).

Example 5.4.1. It is easy to specify a finite automaton \(A \) that accepts precisely the ASCII texts that contain the word ‘combinatorics’. It is also easy to specify an automaton \(B \) that accepts precisely the ASCII texts that do not contain the word ‘generating function’. It is a classic fact that for any two finite automata \(A \) and \(B \) there exists an automaton \(A \times B \) (the so-called product automaton) that accepts a word \(w \) precisely when \(A \) accepts \(w \) and \(B \) accepts \(w \). Hence, there exists a finite automaton that accepts precisely the ASCII texts that contain the word ‘combinatorics’ but that do not contain the word ‘generating function’. The automaton would be too huge to be drawn here, so we present the automaton for two shorter words than ‘combinatorics’ and ‘generating function’ in the next example.

Example 5.4.2. Following the strategy in the previous example, we explicitly construct an automaton that accepts all words that contain the subword ‘aa’, but not the subword ‘abb’; see Figure 5.1.

![Figure 5.1. An illustration of the construction of an automaton accepting all words that contain ‘aa’, but not the subword ‘abb’.](image-url)
5. GENERATING FUNCTIONS

In this section we study the question: how many words of length \(n \) are accepted by a finite automaton \(A \)? Let us write \(a_n \) for this number. We first describe how to translate \(A \) into a so-called *regular expression*.

5.4.2. Regular expressions. A regular expression (over the alphabet \(\Sigma \)) is an expression that is defined inductively:

1. \(\emptyset, \epsilon, \) and all symbols from \(\Sigma \) are regular expressions.
2. If \(e \) is a regular expression, then so is \(e^* \) (the Kleene star);
3. if \(e_1, e_2 \) are regular expressions, then so are \(e_1 \cup e_2 \) (concatenation) and \(e_1 \cdot e_2 \) (alternation).

A regular expression \(e \) over the alphabet \(\Sigma \) describes a formal language \(L(e) \subseteq \Sigma^* \):

1. \(L(\emptyset) = \emptyset \) (the empty language).
2. \(L(\epsilon) = \{ \epsilon \} \) (the language that just contains the empty word).
3. \(L(s) = \{ s \} \) for any \(s \in \Sigma \).
4. \(L(e^*) := \{ w_1 \ldots w_n \mid w_1, \ldots, w_n \in L(e), n \in \mathbb{N} \} \).
5. \(L(e_1 \cup e_2) := \{ w_1 w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2) \} \).
6. \(L(e_1 \cdot e_2) := L(e_1) \cdot L(e_2) \).

We also write \(L_n(e) \) instead of \(L(e) \cap \Sigma^n \). In general, a regular expression \(e \) might be ambiguous in the sense the same word \(w \in L(e) \) can be derived in many different ways. For instance, if \(e = (a \cup aa)^* \) then the word \(aaaa \in L(e) \) can be ‘parsed’ in five different ways, indicated by the brackets as follows:

\[aaaa, (aa)(aa), (aa)aa, (aa)a(a), (aa)(aa) \]

If every word in \(L(e) \) has exactly one parse with respect to \(e \), then we say that \(e \) is an unambiguous regular expression. For example, \(e = (ab \cup abb)^* \) is unambiguous. Ambiguity for regular expressions can be defined formally by induction as follows:

1. \(\emptyset, \epsilon, \) and all symbols in \(\Sigma \) are unambiguous.
2. if \(e_1 \) and \(e_2 \) are unambiguous, and \(|L_n(e_1 \cup e_2)| = |L_n(e_1)| + |L_n(e_2)|\) for all \(n \in \mathbb{N} \), then \(e_1 \cup e_2 \) is unambiguous.
3. if \(e_1 \) and \(e_2 \) are unambiguous, and \(|L_n(e_1 \cdot e_2)| = \sum_{k=1}^{n-1} |L_k(e_1)| \cdot |L_{n-k}(e_2)|\), then \(e_1 \cdot e_2 \) is unambiguous.
4. if \(e \) is unambiguous, and \(|L_n(e^*)| = 1 + |L_{k_1}(e)| + |L_{k_2}(ee)| + |L_{k_3}(eee)| + \cdots \) such that \(k_1 + k_2 + \cdots = n \), then \(e^* \) is unambiguous.

Proposition 5.4.3. For every deterministic finite automaton \(A \) there exists an unambiguous regular expression \(e \) such that \(w \in L(e) \) if and only if \(A \) accepts \(w \).

Proof. Let \(\{1, \ldots, n\} \) be the state space of \(A \). We define an unambiguous regular expression \(R(i, j, k) \) describing all words \(w \) that take state \(i \) to state \(j \) while using intermediate states 1 to \(k \) only:

- \(R(i, j, 0) \) is \(x_1 \cup x_2 \cup \ldots \) where \(x_1, x_2, \ldots \) are the symbols \(x \) such that \(\delta(i, x) = j \). Clearly, this expression is unambiguous.
- \(R(i, i, 0) \) is defined similarly but including \(\epsilon \) in the union.
- for \(k > 0 \) we define \(R(i, j, k) \) to be

\[R(i, j, k - 1) + R(i, k, k - 1)R(k, k, k - 1)^*R(k, j, k - 1) \]

That is, any string that takes state \(i \) to state \(j \) using intermediate states up to \(k \) either goes from \(i \) to \(j \) without going through \(k \), or can be divide into a word that goes from \(i \) to \(k \), a word that goes from \(k \) back to itself, and then a word that goes from \(k \) to \(j \). Again, it is easy to see that \(R(i, j, k) \) is an unambiguous regular expression.

\[^1\]Thanks to Florian Starke for pointing this out.
The entire language accepted by A can then be described as $\bigcup_{i \in F} R(1,i,n)$, which is again an unambiguous regular expression since any word w accepted by the deterministic automaton there is exactly one i such that $w \in L(R(1,i,n))$.

We mention that conversely, it holds that for every regular expression e there exists a DFA that accepts precisely the words in $L(e)$ (unfortunately, in general the size of the DFA might be exponentially large). It follows that every regular expression is equivalent to an unambiguous regular expression.

5.4.3. The generating function of a regular language.

Coming back to our original task, namely to find a formula for the sequence $(a_i)_{i \in \mathbb{N}}$, we describe how to translate an unambiguous regular expression e into a generating function $A_e(x)$.

1. $A_\emptyset(x) := 0$.
2. $A_e(x) = 1$.
3. If $s \in \Sigma$ then $A_s(x) := x$.
4. $A_{e_1 \cup e_2}(x) := A_{e_1}(x) + A_{e_2}(x)$.
5. $A_{e_1 e_2}(x) := A_{e_1}(x) \cdot A_{e_2}(x)$.
6. If $e = e'$ then $A_{e^*}(x) := \frac{1}{1 - A_e(x)}$.

Lemma 5.4.4. Let e be an unambiguous regular expression. Then

$$A_e(x) = \sum_{n \in \mathbb{N}} |L_n(e)| x^n.$$

Proof. The proof is more or less obvious from the definition of unambiguity. The most interesting translation step is perhaps item (6). To see that this is correct, recall that $\frac{1}{1-t^2} = 1 + t^2 + t^4 + \cdots$. Moreover, using composition of formal power series, we get $\frac{1}{1 - A_e(x)} = 1 + A_e(x) + A_e(x)^2 + A_e(x)^3 + \cdots$. Since $A_e(x)^k$ is the generating function for words composed of k words in e, unambiguity gives us that $[x^n] \frac{1}{1 - A_e(x)} = |L_n(e^*)|$.

Example 5.4.5. Let $e = (a^*b)^*$. Then we have

$$A_e = \frac{1}{1 - A_{a^*b}(x)} = \frac{1}{1 - \frac{x}{1 + x}} = \frac{1}{1 - \frac{x}{1 - 2x^2}} = 1 + \frac{1}{2(1 - 2x)}$$

and hence $a_n = 1$ if $n = 0$ and $a_n = 2^{n-1}$ for $n > 0$.

In general, to obtain an explicit formula for a_n we can compute the partial fraction expansion (see Section 5.3.5).

Example 5.4.6. Let $e = (aa|bb)^*$. Then we have

$$A_e = \frac{1}{1 - A_{aa|bb}(x)} = \frac{1}{1 - 2x^2}.$$

The polynomial $1 - 2x^2$ can be factored as $(1 - \sqrt{2}x)(1 + \sqrt{2}x)$. For a partial fraction expansion, we are looking for a,b such that

$$(1 + \sqrt{2}x)a + (1 - \sqrt{2}x)b = 1$$

and thus $a + b = 1$ and $a - b = 0$. Therefore, $a = b = 1/2$. We then have

$$A_e = \frac{1}{2} \left(\frac{1}{1 - \sqrt{2}x} + \frac{1}{1 + \sqrt{2}x} \right)$$
and hence

\[[x^n] A_e = \frac{1}{2} \left(\sqrt{2^n} - \sqrt{2^n} \right) = \begin{cases} 2n/2 & \text{for even } n \\ 0 & \text{for odd } n \end{cases} \]

Remark 5.4.7. It is straightforward to adapt Lemma 5.4.4 to obtain a generating function in several variables (also see 5.3.1) that takes into account the number of a’s, b’s, etc. in the word.

5.5. Analytic Combinatorics

For certain values of \(x \in \mathbb{C} \) a given power series \(A(x) = \sum_{n \in \mathbb{N}} a_n x^n \) (say, with coefficients \(a_i \) in \(\mathbb{Z}, \mathbb{Q}, \mathbb{R} \), or even \(\mathbb{C} \)) might converge; the set of all \(x \in \mathbb{C} \) where \(A(x) \) converges might tell us a lot about the asymptotic growth of the \(a_n \). All the necessary concepts from calculus are introduced in Appendix A.

5.5.1. From formal power series to functions.

Definition 5.5.1. Let \(A(x) = \sum_{n \in \mathbb{N}} a_n x^n \in \mathbb{C}[[x]] \) and let \(z \in \mathbb{C} \). We say that

- \(A(z) \) converges if the limit \(\lim_{n \to \infty} \sum_{i=0}^{n} a_i z^i \in \mathbb{C} \) exists; in this case, we also use the notation \(\sum_{n \in \mathbb{N}} a_i z^i \) for the limit;
- \(A(z) \) diverges, otherwise;
- \(A(z) \) converges absolutely if \(\lim_{n \to \infty} \sum_{i=0}^{n} |a_i| z^i \in \mathbb{C} \) exists.

Hence, if \(S \subseteq \mathbb{C} \) is such that \(A(z) \) converges for all \(z \in S \), then \(A(x) \) defines a function \(S \to \mathbb{C} \) mapping \(z \in S \) to \(A(z) \). Absolute convergence is important for the study of infinite series because it occurs often but behaves nicely; in particular, rearrangements do not change the value of the limit. This is not true for convergent series in general:

\[
\sum_{n \in \mathbb{N}} \frac{(-1)^n}{n+1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots = \ln 2 \quad \text{(see (39) below)}
\]

which is smaller than 1. However, the rearrangement \(\sum_{n \in \mathbb{N}} \frac{(-1)^n}{n+1} = 1 + (-\frac{1}{2} + \frac{1}{3} + \frac{1}{4}) + (-\frac{1}{5} + \frac{1}{7} + \frac{1}{8}) + (-\frac{1}{9} + \frac{1}{11} + \frac{1}{12}) + \cdots \) is larger than 1 since each of the three-term sums is positive.

We say that a series \(\sum_{n \in \mathbb{N}} a_n \) is unconditionally convergent if all rearrangements of the series converge to the same value, i.e., for every permutation \(\pi : \mathbb{N} \to \mathbb{N} \) we have that \(\sum_{n \in \mathbb{N}} a_{\pi(n)} \) converges. Since the topology of \(\mathbb{C} \) is complete, absolute convergence implies unconditional convergence. In fact, we even have equivalence, by the Riemann rearrangement theorem, but we do not need this in the further course. However, what is heavily used is the following.

Lemma 5.5.2 (Weierstrass). Any absolutely convergent series \(\sum_{n \in \mathbb{N}} a_n = a \) in \(\mathbb{C} \) is unconditionally convergent.

\footnote{2The recipe to form the triples is: enumerate the even numbers and the odd numbers in parallel; the first entry of the triple is \(-\frac{1}{n} \) for the next even number, and the second and third entries of a triple are \(\frac{1}{m} \) and \(\frac{1}{m+2} \) for the next two odd numbers \(m\) and \(m+2\). Clearly, this gives a bijection to the terms in (39).}
Proof. Let \(\pi : \mathbb{N} \to \mathbb{N} \) be a permutation and let \(\epsilon > 0 \). By the absolute convergence of \(\sum_{n \in \mathbb{N}} a_n \) we can find a \(k \in \mathbb{N} \) such that \(\sum_{n=k}^{\infty} |a_n| < \epsilon \). Let \(m \in \mathbb{N} \) be such that \(\{a_0, \ldots, a_{k-1}\} \subseteq \{a_{\pi(1)}, \ldots, a_{\pi(m)}\} \). Then for all \(\ell \geq m \) we have

\[
\left| - \sum_{n=0}^{\ell} a_{\pi(n)} + \sum_{n \in \mathbb{N}} a_n \right| \leq \left| \sum_{n=k}^{\infty} a_n \right| \leq \sum_{n=k}^{\infty} |a_n| \leq \epsilon
\]

(triangle inequality)

To see why the inequality in line (*) holds, observe that the terms \(a_0, \ldots, a_{k-1} \) appear in both \(\sum_{n=0}^{k} a_{\pi(n)} \) and \(\sum_{n \in \mathbb{N}} a_n \) and thus get cancelled (some more terms might get cancelled so we might not have equality).

We recall one of the basic divergence and convergence tests.

Lemma 5.5.3 ((d’Alembert’s) ratio test). Let \((a_n)_{n \in \mathbb{N}}\) be a sequence of real numbers and let

\[
\ell := \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|
\]

Then \(\sum_{n \in \mathbb{N}} a_n \) converges absolutely if \(\ell < 1 \), and diverges if \(\ell > 1 \).

Proof. Suppose that \(\ell < 1 \). Let \(r := \frac{\ell + 1}{2} \). Then \(1 < r < \ell \) and there exists an \(m \in \mathbb{N} \) such that \(|a_{n+1}| < r |a_n| \) for every \(n \geq m \). Then

\[
\sum_{i \in \mathbb{N}} |a_{i+m}| < \sum_{i \in \mathbb{N}} r^i |a_m| = |a_m| \sum_{i \in \mathbb{N}} r^i = |a_m| \frac{1}{1-r} < \infty.
\]

On the other hand, if \(\ell > 1 \), then there exists an \(m \in \mathbb{N} \) so that \(|a_{n+1}| > |a_n| \) for all \(n \geq m \), and hence the series diverges by the term test.

Example 5.5.4. The ratio test implies that \(\exp(x) = \sum_{n \in \mathbb{N}} \frac{1}{n!} x^n \) converges absolutely for all \(z \in \mathbb{C} \), because

\[
\lim_{n \to \infty} \left| \frac{n! z^{n+1}}{(n+1)! z^n} \right| = \lim_{n \to \infty} \left| \frac{z}{n+1} \right| = 0 < 1.
\]

Theorem 5.5.5 (Cauchy-Hadamard). Let \(A(x) \in \mathbb{C}[[x]] \). Then there exists a non-negative number \(r \in \mathbb{R} \cup \{+\infty\} \), called the radius of convergence, such that the series \(A(z) \) converges for all \(z \in \mathbb{Z} \) with \(|z| < r \) and diverges for all \(z \in \mathbb{Z} \) with \(|z| > r \). Moreover, \(a_n \in O((1/r)^n) \).

Proof. Let

\[
r := \limsup_{n \to \infty} |a_n|^{1/n}.
\]

Let \(z \in \mathbb{C} \) be such that \(|z| < r \). We have to show that \(A(z) \) converges. Pick \(\epsilon > 0 \) such that

\[
|z| < \frac{r}{1 + \epsilon r}
\]

which is the case if and only if

\[
\alpha := |z| \cdot (1/r + \epsilon) < 1.
\]
Since \(\limsup_{n \to \infty} |a_n|^{1/n} = 1/r \) there exists an \(n \in \mathbb{N} \) such that for all \(m > n \)
\[
|a_m|^{1/m} < 1/r + \epsilon.
\]
Hence,
\[
|a_m| \cdot |z|^m < ((|z| \cdot (1/r + \epsilon))^m = \alpha^m.
\]
We have that \(\sum_{m \in \mathbb{N}} \alpha^m \) converges absolutely by the ratio test, and hence \(A(z) = \sum_{n \in \mathbb{N}} a_n z^n \) converges absolutely, too.

Now suppose that \(|z| > r \). We will show that \(a_n z^n \) for \(n \to \infty \) does not converge to 0, which implies in particular that \(\sum_{n \in \mathbb{N}} a_n z^n \) diverges. Choose \(\epsilon > 0 \) such that \(\theta := |z/r - \epsilon| > 1 \). Since \(\limsup_{n \to \infty} |a_n|^{1/r} = 1/r \) there exists an \(n \) such that for all \(m \geq n \)
\[
|a_m|^{1/m} > \frac{1}{r} - \epsilon.
\]
Hence,
\[
|a_n z^n| > \left| \left(\frac{1}{r} - \epsilon \right) z \right|^n = \theta^n
\]
which tends to \(\infty \) for \(n \to \infty \) since \(\theta > 0 \). The cases where \(r \in \{0, \infty\} \) are similar and left to the reader. \(\square \)

Theorem 5.5.5 shows how to obtain some asymptotic information about \(a_n \) from the radius of convergence of the corresponding series \(A(x) \). Much more detailed information can be obtained via a method called singularity analysis which is beyond the scope of this lecture. An introduction to this technique can be found in [8] and Sections 5.7.5 and 5.7.4 give illustrations of what can be shown with it.

Example 5.5.6. The formal power series \(\sum_{n \in \mathbb{N}} n! x^n \in \mathbb{Z}[[x]] \) diverges for every \(x \in \mathbb{C} \setminus \{0\} \), and hence its radius of convergence is 0. Hence, Theorem 5.5.5 does not provide any interesting bound for the growth of the coefficients. An approach to analyse sequences that have such a fast growth will be presented in Section 5.7.

For \(r \in \mathbb{R}^+ \) we write \(D_r \) for the set \(\{ x \in \mathbb{C} : |x| < r \} \), the open disc centered at 0.

Definition 5.5.7. Let \(A \in \mathbb{C}[[x]] \) be a formal power series with radius of convergence \(r \in \mathbb{R}^+ \). Then \(f_A : D_r \to \mathbb{C} \) defined by \(z \mapsto A(z) \) is called the *function described by \(A \).*

Recall that absolute convergence implies unconditional convergence (Lemma 5.5.2), so we can rearrange the order of summation in the proof of the following proposition.

Proposition 5.5.8. Let \(A, B \in \mathbb{C}[[x]] \) be power series with convergence radius \(r \in \mathbb{R}^+ \) and \(s \in \mathbb{R}^+ \), respectively; suppose that \(r \leq s \). Then

1. \(A(x) + B(x) \) has convergence radius at least \(r \) and describes the function \(f_A + f_B \);
2. \(A(x) \cdot B(x) \) has convergence radius at least \(r \) and describes the function \(f_A f_B \).

Proof. Concerning (1), let \(z \in D_r \), and compute:
\[
f_A(z)f_B(z) = \sum_{k \in \mathbb{N}} a_k z^k + \sum_{k \in \mathbb{N}} b_k z^k \quad \text{(have absolute convergence)}
\]
\[
= \sum_{n \in \mathbb{N}} (a_n + b_n) z^n \quad \text{(Lemma 5.5.2)}
\]
\[
= f_{A+B}(z) \quad \text{(by the definition of \(A + B \)).}
\]
Concerning (2), let \(z \in D_r \), and compute:

\[
\begin{align*}
 f_A(z) f_B(z) &= f_A(z) \sum_{\ell \in \mathbb{N}} b_\ell z^\ell \\
 &= \sum_{\ell \in \mathbb{N}} f_A(z) b_\ell z^\ell \\
 &= \sum_{\ell \in \mathbb{N}} \sum_{k \in \mathbb{N}} a_k b_\ell z^{k\ell} \quad \text{(have absolute convergence)} \\
 &= \sum_{n \in \mathbb{N}} \left(\sum_{k+l=n} a_k b_\ell \right) z^n \quad \text{(Lemma 5.5.2)} \\
 &= f_{A \cdot B}(z) \quad \text{(by the definition of } A \cdot B).
\end{align*}
\]

\[\square\]

We finally also treat composition of power series analytically. Not surprisingly, composition of holomorphic functions matches the definition of composition of formal power series in the following sense.

Proposition 5.5.9. Let \(A, B \in \mathbb{C}[[x]] \) be power series with convergence radius \(r \in \mathbb{R}^+ \) and \(s \in \mathbb{R}^+ \), respectively; suppose that \(r \leq s \). If \([x^0]B(x) = 0 \) so that \(A(B(x)) \) is defined, then \(A(B(x)) \) has a positive radius of convergence \(t \leq r \) and describes the holomorphic function \(f_A \circ f_B : D_t \to \mathbb{C} \).

Proof. Let \(S := \{ z \in D_s \mid B(z) \in D_r \} \). Note that this set is non-empty since \(0 \in S \). Since \(f_B \) is continuous by Lemma 5.5.10, we have that \(S \) is the intersection of the open set \(D_s \) with the open pre-image of \(D_r \) under \(f_B \), and hence open, and therefore contains \(D_t \) for some \(t \in \mathbb{R}^+ \). Let \(z \in D_t \). Then

\[
\begin{align*}
 f_A(f_B(z)) \\
 &= \sum_{n \in \mathbb{N}} a_n \left(\sum_{k \in \mathbb{N}} b_k z^k \right)^n \quad \text{(have absolute convergence)} \\
 &= \sum_{n \in \mathbb{N}} \sum_{k_1, \ldots, k_{\ell} \in \mathbb{N}, \sum_{i=1}^\ell k_i = n} |b_{k_1} \cdots b_{k_\ell}| z^n \quad \text{(use Prop. 5.5.8 (2) several times)} \\
 &= f_{A(B(x))}(z) \quad \text{(by definition of } A(B(x))).
\end{align*}
\]

\[\square\]

A function \(f : D_r \to \mathbb{C} \) is called **holomorphic** if \(f \) is (complex-) differentiable at every point \(z \in D_r \), i.e.,

\[
 f'(z) := \lim_{a \to z} \frac{f(a) - f(z)}{a - z}
\]

exists (by purpose, we use the same notation as for the formal derivative in [5.3.3]).

The next lemma shows that if \(A \in \mathbb{K}[[x]] \) has a positive radius of convergence \(r \in \mathbb{R}^+ \), then the function \(f_A : D_r \to \mathbb{C} \) is holomorphic (and in particular continuous). The derivative \(f'_A \) is given by the formal derivative \(A' \); in other words, the derivative can be computed ‘term by term’. The proof here is slightly more difficult than the easy facts from Proposition 5.5.8.

Lemma 5.5.10. Suppose that \(A = \sum_{n \in \mathbb{N}} a_n x^n \in \mathbb{C}[[x]] \) has convergence radius \(r \in \mathbb{R} \) and let \(f_A : D_r \to \mathbb{C} \) be given by \(z \mapsto A(z) \). Then \(A'(x) \) has radius of convergence \(r \) and describes \(f'_A \).
Proof. To prove that $A'(z)$ converges for $z \in D_r$, pick $s \in \mathbb{R}$ such that $|z| < s < r$.

Since $A(s)$ converges, the terms $|a_n s^n|$ are bounded above, say by b. Then

$$n|a_n| s^n = n|a_n s^n|(z/s)^n \leq nb(z/s)^n.$$

The series $\sum_{n \in \mathbb{N}} nb(z/s)^n$ converges absolutely by the ratio test. Therefore, by the comparison test, the series $A'(z) = \sum_{n \in \mathbb{N}} n|a_n| z^{n-1}$ converges absolutely. It follows that $A'(x)$ has the same radius of convergence as $A(x)$.

To prove that $f'_A(z) = A'(z)$ we use the identity

$$(p - q)(p^{n-1} + p^{n-2}q + \cdots + pq^{n-2} + q^{n-1}) = p^n - p^{n-1}q + p^{n-1}q - \cdots + q^n$$

$$= p^n - q^n \quad (33)$$

to compute

$$f'_A(z) = \lim_{a \rightarrow z} \frac{f(a) - f(z)}{a - z} = \lim_{a \rightarrow z} \sum_{n \in \mathbb{N}} \frac{a_n (a^n - z^n)}{a - z}$$

$$= \lim_{a \rightarrow z} \sum_{n \in \mathbb{N}} a_n (a^{n-1} + a^{n-2}z + \cdots + az^{n-2} + z^{n-1}) \quad (34)$$

This already looks quite close to $\sum_{n \in \mathbb{N}} a_n n z^{n-1}$, but in general we cannot just exchange the order of a limit and an infinite sum. So we choose the following approach: it suffices to prove that

$$\lim_{a \rightarrow z} \frac{f_A(a) - f_A(z)}{a - z} - f_{A'}(z) = 0 \quad (35)$$

the advantage being that the left hand side can be broken into three parts that can be analysed separately. Write $S_k(x)$ for the polynomial $\sum_{n=1}^{k} a_n x^n$ and $E_k(x)$ for the series $\sum_{n=k+1}^{\infty} a_n x^n$ so that $A(x) = S_k(x) + E_k(x)$ (and we think of $S_k(x)$ as an approximation to $A(x)$ and the $E_k(x)$ as the error we make with the approximation).

The expression in $\boxed{35}$ can now be rewritten:

$$\frac{E_k(a) - E_k(z)}{a - z} + \left(\frac{S_k(a) - S_k(z)}{a - z} - S'_k(z) \right) + (S'_k(z) - f_{A'}(z)). \quad (36)$$

To show that this term goes to 0 as a tends to z, let $\epsilon > 0$ be given. The first term in $\boxed{36}$ can be analysed as above: since $|z| < s$ and $a \rightarrow \infty$ the triangle inequality will give us eventually

$$\left| \frac{E_k(a) - E_k(z)}{a - z} \right| = \sum_{n=k+1}^{\infty} a_n (a^{n-1} + a^{n-2}z + \cdots + z^{n-1}) \leq \sum_{n=k+1}^{\infty} |a_n| n s^{n-1}. \quad (37)$$

Note that this is just the tail $A'(s)$ which converges (Lemma $\boxed{A.1.4}$), so this term must approach 0 for $k \rightarrow \infty$. That is, we can find a $k_1 \in \mathbb{N}$ and a $\delta_1 > 0$ such that for all $k > k_1$ and for all a such that $|a - z| < \delta_1$ we have that $\boxed{37} \leq \epsilon/3$.

The other two terms are even easier to bound: $S_k(x)$ is a polynomial, so

$$\lim_{a \rightarrow z} \frac{S_k(a) - S_k(z)}{a - z} - S'_k(z) = 0. \quad (38)$$

In other words, we can find a $\delta_2 > 0$ such that for all a with $|a - z| < \delta_2$ the second term is smaller than $\epsilon/3$.

For the third term, we know that $S'_k(z) \rightarrow f_A(z)$ as $k \rightarrow \infty$ because $A'(z)$ converges absolutely for $|z| < r$ and $S'_k(z)$ is just the k-th partial sum of this power series. Hence, we can find a $k_3 \in \mathbb{N}$ and a $\delta_3 > 0$ such that for all $k > k_3$ and a with $|a - z| < \delta_3$ we have $S'_k(z) - f_A(z) < \epsilon/3$. Now select any $k_0 > \max(k_1, k_3)$ and
\(\delta := \min(\delta_1, \delta_2, \delta_3) \) and the triangle inequality gives us that the expression in (36) is smaller than \(\epsilon \), which is what we wanted to show. \(\square \)

Remark 5.5.11. A posteriori, the deeper reason why the limit and the infinite sum in (34) can be exchanged is that the polynomials \(S_k(x) \) converge uniformly against \(A(x) \) within \(D_s \); we do not further elaborate on this, but refer to more advanced calculus classes.

5.5.2. From functions to power series: Taylor expansion.

The correspondence between power series and functions is a two-way correspondence; when we talk about generating functions, we always have this double perspective in mind. The following definition is the central notion to produce a power series from a function.

Definition 5.5.12. Let \(f \) be a real-valued or complex-valued function that is infinitely differentiable at a real or complex number \(a \). Then the Taylor expansion of \(f \) at \(a \) is the power series
\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.
\]

In the following we work mostly in a setting where the correspondence between functions and power series is simplest to describe, namely for functions over the complex numbers. One of the major theorems in complex analysis says that every holomorphic function \(f \) is analytic, i.e., can be expressed as a converging power series (with a positive radius of convergence). We do not need this result in this course (since in analytic combinatorics we start with the power series and analyse it using holomorphic functions, not the other way round) but we want to mention the theorem here to give the full picture.

Theorem 5.5.13. Let \(r \in \mathbb{R}^+ \) and let \(f : D_r \to \mathbb{C} \) be a holomorphic function. Then for all \(z \in D_r \)
\[
f(z) = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(0)}{n!} z^n
\]
that is, \(f(z) \) equals the Taylor series of \(f \) at 0 evaluated at \(z \).

Proof. This is outside the scope of this course, and a great advertisement for the complex analysis courses offered at TU Dresden . . . \(\square \)

Why do we need to work over the complex numbers? Well, a naive variant of the statement for the real numbers is simply wrong, as the following example shows.

Example 5.5.14. There are non-constant functions \(f : \mathbb{R} \to \mathbb{R} \) that are infinitely often differentiable at each \(z \in D_1 \), but their Taylor expansion at 0 is the series that is identically 0. Namely, we consider the function given by
\[
z \mapsto \begin{cases}
0 & \text{if } z = 0 \\
e^{-\frac{1}{z^2}} & \text{otherwise}.
\end{cases}
\]
Note that if we consider the function defined by the same expression over the complex numbers instead, then by choosing \(a \in \mathbb{R}^+ \) sufficiently small the value of \(f(ai) = e^{\frac{1}{a^2}} \) can be made arbitrarily large, and hence \(\lim_{a \to 0} \frac{f(ai)-f(0)}{ai-0} \) does not exist. Therefore, \(f : \mathbb{C} \to \mathbb{C} \) is not holomorphic.

Lemma 5.5.15 below implies that, informally, when we start from a formal power series \(A(x) \) with positive radius of convergence \(r \) and turn it into a function \(f_A : D_r \to \mathbb{C} \), then the Taylor expansion of \(f_A \) gives back \(A(x) \).
LEMMA 5.5.15. Let $A(x) = \sum_{n \in \mathbb{N}} a_n x^n \in \mathbb{C}[x]$ be a formal power series with a positive radius of convergence $r \in \mathbb{R}^+ \cup \{+\infty\}$. Then the function $f_A : D_r \to \mathbb{C}$ given by $z \mapsto A(z)$ is holomorphic, and

$$a_n = \frac{f_A^{(n)}(0)}{n!}. \quad (38)$$

PROOF.

$$a_n = \frac{A^{(n)}(0)}{n!} \quad (\text{see } (30))$$

and hence A is the Taylor expansion of f_A at 0.

□

COROLLARY 5.5.16. Let $r \in \mathbb{R}^+$, let $f, g : D_r \to \mathbb{C}$ be holomorphic, and let $A, B \in \mathbb{C}[x]$ be the Taylor expansions of f and g at 0. Then

1. $f + g$ is holomorphic and has the Taylor expansion $A(x) + B(x)$ at 0.
2. fg is holomorphic and has the Taylor expansion $A(x) \cdot B(x)$ at 0.
3. If $g(0) = 0$, then $f \circ g$ is holomorphic with Taylor expansion $A(B(x))$ at 0.

PROOF. The first fact can easily be proven directly: it is easy to verify that $f + g$ is holomorphic, and by Theorem 5.5.13 it equals its Taylor expansion at 0, which is

$$\sum_{n \in \mathbb{N}} \frac{(f + g)^{(n)}(0)}{n!} x^n = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(0) + g^{(n)}(0)}{n!} x^n = A(x) + B(x).$$

Here is an alternative argument: we have $f + g = f_A + f_B = f_{A+B}$ by Proposition 5.5.8 and this function is holomorphic and has the Taylor expansion $A(x) + B(x)$ by Lemma 5.5.10. The advantage of this argument is that the second statement can be shown in complete analogy (while it seems more tedious to me to determine the Taylor expansion of $f \cdot g$). Also the third statement can be shown in the same way: we have $f \circ g = f_A \circ f_B = f_{A \circ B}$ by Proposition 5.5.9 which is holomorphic with Taylor expansion $A(B(x))$ by Lemma 5.5.10. □

We will illustrate the use of the correspondence between power series and real-valued functions by Newton’s theorem (Theorem 5.5.19 below). The following fact about polynomials is well-known to the reader.

THEOREM 5.5.17 (Binomial theorem). Let $z \in \mathbb{N}$ and $x \in \mathbb{C}$ (or any other field instead of \mathbb{C}). Then

$$(1 + x)^z = \sum_{k=0}^{\infty} \binom{z}{k} x^k.$$
5.5. ANALYTIC COMBINATORICS

- For \(z \in \mathbb{R} \) and positive \(b \), we choose an arbitrary sequence \(e_1, e_2, \ldots \) of rational numbers with \(\lim_{n \to \infty} e_n = z \), and define
 \[b^z := \lim_{n \to \infty} b^{e_n}. \]

We also generalise the binomial coefficients.

Definition 5.5.18. Let \(z \) be a real (or complex) number, and \(k \in \mathbb{N} \). Define
\[
\left(\begin{array}{c} z \\ k \end{array} \right) := \frac{z(z-1)(z-2)\cdots(z-k+1)}{k!}.
\]

In particular, \(\left(\begin{array}{c} 0 \\ k \end{array} \right) = 1. \)

Theorem 5.5.19 (Newton). Let \(x \in \mathbb{C} \) with \(|x| < 1 \) and \(z \in \mathbb{R} \). Then
\[
(1 + x)^z = \sum_{n \in \mathbb{N}} \left(\begin{array}{c} z \\ n \end{array} \right) x^n.
\]

Proof. The function \(f : \mathbb{C} \to \mathbb{C} \) given by \(x \mapsto (1 + x)^z \) is holomorphic, and from calculus courses you know that the derivative is \(z(1 + x)^{z-1} \). The \(n \)-th derivative of \(f \) is
\[
z(z-1)(z-2)\cdots(z-n+1)(1 + x)^{z-n}.
\]

Hence, the Taylor expansion of \(f \) at 0 is
\[
\sum_{n \in \mathbb{N}} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n \in \mathbb{N}} \left(\begin{array}{c} z \\ n \end{array} \right) x^n.
\]

Example 5.5.20. The Taylor expansion of \(\sqrt{1 - x} \) is
\[
\sum_{n \in \mathbb{N}} \left(\begin{array}{c} 1/2 \\ n \end{array} \right) (-x)^n = 1 - \frac{1}{2} x - \frac{1}{8} x^2 - \cdots.
\]

The **natural logarithm** is the function \(\ln : \mathbb{R}^+ \to \mathbb{R} \) which maps \(x > 0 \) to the unique element \(y \in \mathbb{R} \) such that \(e^y = x \). Applying the chain rule from calculus to \(\ln(e^y) = y \) gives \(\ln'(e^y) = 1 \), and substituting \(e^y \) by \(x \) gives \(\ln'(x) = \frac{1}{x} \).

The function \(x \mapsto \ln(1 + x) \) is infinitely often differentiable in 0 and we can compute its Taylor expansion: we have
\[
\ln(1 + x)' = \frac{1}{1 + x} = \sum_{n \in \mathbb{N}} (-1)^n x^n
\]
and \(\ln(1 + x)^{(n)}(0) = (-1)^{n-1} (n-1)! \) for \(n \geq 1 \)

and therefore the Taylor expansion of \(\ln(1 + x) \) at 0 is
\[
\ln(1 + x) = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n \in \mathbb{N}^+} \frac{(-1)^{n-1}}{n} x^n = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots.
\]

This series converges for all \(z \in \mathbb{Z} \) with \(|z| < 1 \) and diverges for \(z = -1 \), so it has radius of convergence 1.

We will now show that exponentiation and logarithm are also inverses of each other as formal power series. First, note that the composition \(\exp(\ln(1 + x)) \) is well-defined as a formal power series since \([x^0] \ln(1 + x) = 0.\)

Proposition 5.5.21. \(\exp(\ln(1 + x)) = 1 + x \).
Proof sketch. We use the chain rule \([32]\) to compute the derivative of the left-hand side of the equation:

\[
\exp(\ln(1 + x))' = \exp(\ln(1 + x)) \cdot \frac{1}{1 + x}.
\]

So \(\exp(\ln(1 + x))\) is a solution for \(H\) in the differential equation

\[
H' = \frac{H}{1 + x}
\]

with the initial condition \(H(0) = \exp(\ln(1)) = 1\). Clearly, \(H(x) = 1 + x\) is a solution to the same differential equation. There is a formal version of the Picard-Lindelöf (aka Cauchy-Lipschitz) theorem which asserts the uniqueness of solutions to such ordinary differential equation, and we conclude that \(\exp(\ln(1 + x)) = 1 + x\). \(\square\)

How about the converse, i.e., inverting \(\exp(x)\) with the help of a logarithm? Note that we have not defined \(\ln(x)\) as a formal power series, but we may define \(\ln(\exp(x))\) as the composition \(\ln(\exp(x)) := \ln(1 + (\exp(x) - 1))\) which is well-defined.

Proposition 5.5.22. \(\log(\exp(x)) = \ln(1 + (\exp(x) - 1)) = x\).

Proof. We proceed similarly as in Corollary \(5.5.21\).

\[
\ln(1 + (\exp(x) - 1))' = \ln'(1 + (\exp(x) - 1))(\exp(x) + 1)' \quad \text{(by the chain rule \([32]\))}
\]

\[
= \frac{\exp'(x)}{\exp(x)} = 1
\]

So \(\log(\exp(x))\) is a solution to the ordinary differential equation \(H(x)' = 1\) with the initial condition \(H(0) = \ln(\exp(0)) = \ln(1) = 0\). The obvious unique solution to this differential equation is \(H(x) = x\) and so we must have \(\ln(\exp(x)) = x\). \(\square\)

5.6. The Catalan Numbers

A **binary tree** is defined recursively:

- the empty set is a binary tree, and
- if \(B_1\) and \(B_2\) are binary trees, then \((B_1, B_2)\) is a binary tree.

Let \(B\) be a binary tree. Then the **size** \(|B|\) of \(B\) is also defined recursively: the binary tree \(\emptyset\) has size 0, and \((B_1, B_2)\) has size \(|B_1| + |B_2| + 1\). We can associate in the obvious way to each binary tree \(B\) a tree in the sense of graph theory (Section 1.3): if \(B\) has size \(n\), then this tree has \(2n + 1\) vertices, and each vertex has either degree 1, 2, or 3. Instead of formally defining the translation, we simply illustrate this simple connection by a picture in Figure 5.2.

There is at most one vertex which can have degree two, and this vertex is called the **root** of the tree. Such a degree-2 vertex does not exist precisely if the tree has only one vertex, and in this special case the root is defined to be this vertex. Conversely, every rooted tree with the properties above can be naturally associated to a binary tree.

5.6.1. A recursion formula. Directly from the definition of binary trees we obtain a formula for the number \(c(n)\) of all binary trees of size \(n \in \mathbb{N}\):

\[
c(0) = 1 \quad (40)
\]

\[
c(n + 1) = \sum_{i=0}^{n} c(i)c(n - i) \quad (41)
\]
In this way, the values of $c(n)$ can be computed relatively quickly. We show the values for $n \in \{0, \ldots, 9\}$.

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c(n)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>132</td>
<td>429</td>
<td>1430</td>
<td>4862</td>
</tr>
</tbody>
</table>

These initial terms suffice to match our sequence with sequence A000108 in the Online Encyclopedia of Integer Sequences, the so-called Catalan Numbers.

5.6.2. Generating trees uniformly at random.

The recursion formula (41) can be used to generate a binary tree of a given size n uniformly at random, that is, every binary tree of size n should be generated with equal probability. Random generation of combinatorial objects have several applications. For example, you might empirically test a conjecture concerning typical properties of binary trees (such as the depth of the tree, etc), by generating many of those objects for large n and verify the property of interest.

To generated a binary tree of size n uniformly at random, we follow the recursive definition of binary trees:

- if we have to generate a binary tree of size 0, this this tree must be the binary tree \emptyset, and there is no randomness involved: we simply output \emptyset.
- If we have to generate a binary tree of size $n \geq 1$, then this tree must have the shape (B_1, B_2). We want to first generate B_1 and B_2 recursively. To do this this, we have to make a decision: what should be the size i of B_1? The size of B_2 is fixed by this decision: it must be $n - i - 1$.

There are exactly $c_i c_{n-i}$ binary trees (B_1, B_2) of size $n + 1$ where $|B_1| = i$, for $i \in \{0, \ldots, n\}$. The fraction of binary trees within the set of all binary trees of size $n + 1$ is therefore exactly

$$ p := \frac{c_i c_{n-i}}{c_{n+1}}. $$

Our algorithm chooses this particular i with probability p (this is a primitive operation in most programming languages). Since the Catalan numbers can be computed efficiently, the value of p can be computed efficiently as well. To summarise, we
Procedure BTree.
Input: \(n \in \mathbb{N} \).
Output: a binary tree of size \(n \) uniformly at random.
If \(n = 0 \) return \(\emptyset \) aus.
If \(n > 0 \), compute \(c_1, \ldots, c_n \).
Choose an integer from \(\{1, \ldots, c_n\} \) uniformly at random.
Set \(b := 0 \).
Loop over \(i = 0 \) to \(n - 1 \):
If \(p \in \{b, \ldots, b + c_{n-i-1}\} \)
Return \((\text{BTree}(i), \text{BTree}(n-i-1))\).
\(b := b + c_{n-i-1} \).

Figure 5.3. Generation of a binary tree of size \(n \), drawn uniformly at random, with the recursive method.

show in Figure 5.3 the entire algorithm in pseudocode. This method works for many combinatorial classes, and is called the recursive method.

5.6.3. A closed expression. An even faster method to compute the values of \(c_n \) is the following theorem.

Theorem 5.6.1 (Euler 1751). For all \(n \in \mathbb{N} \)

\[
c_n = \frac{1}{n+1} \binom{2n}{n}.
\]

Theorem 5.6.1 can be proved by specifying an appropriate bijection (between certain words) and binary trees; see [9]. This bijection is also the key to more efficient methods to generate binary trees uniformly at random. Here we will present a different, algebraic proof (historically the first) of Theorem 5.6.1.

Proof of Theorem 5.6.1 Step 1. We consider the power series

\[
C(x) := \sum_{n=0}^{\infty} c_n x^n.
\]

Step 2. Multiplying the left hand side of (40) by \(x^n \) and summing over all \(n \in \mathbb{N} \) we obtain

\[
\sum_{n \in \mathbb{N}} c_{n+1} x^n = \sum_{n \in \mathbb{N}} \frac{c_{n+1} x^{n+1} + 1 - 1}{x} = \sum_{n \in \mathbb{N}} c_n x^n - \frac{1}{x} = C(x) - \frac{1}{x}
\]

Doing the same with the right hand side of (40) yields

\[
\sum_{n=0}^{\infty} \sum_{i=0}^{n} c_i c_{n-i} x^n = C(x)^2
\]

by the very definition of the Cauchy product \(C(x)^2 = C(x)C(x) \). Hence,

\[
\frac{C(x) - 1}{x} = C(x)^2
\]

and reformulating we obtain

\[
xC(x)^2 - C(x) + 1 = 0 \tag{42}
\]
Step 3. We can now solve for \(C(x) \):
\[
C(x) = \frac{1 \pm \sqrt{1-4x}}{2x}.
\] (43)

If \(x \) tends to 0, then \(C(x) \) tends to 1, but the expression \(\frac{1+\sqrt{1-4x}}{2x} \) tends to infinity.
So we choose the solution \(\frac{1-\sqrt{1-4x}}{2x} \).

This is already sufficient to determine the asymptotic growth of the sequence \((c_n)_{n \in \mathbb{N}} \): \(C(x) \) converges for \(|x| < \frac{1}{4} \) and diverges for \(x = \frac{1}{4} \), so Theorem 5.5.5 implies that \(c_n \in O(4^n) \).

Step 4. The obtain a precise formula for \(c_n \), we continue as follows.
\[
C(x) = \frac{1 - \sqrt{1-4x}}{2x} = \frac{1}{2x} - \frac{1}{2x} (1-4x)^{1/2} \quad \text{(rewriting)}
\]
\[
= \frac{1}{2x} - \frac{1}{2x} \sum_{n \in \mathbb{N}} \binom{1/2}{n} (-4x)^n \quad \text{(Newton, Theorem 5.5.19)}
\]
\[
= \frac{1}{2x} + \sum_{n \in \mathbb{N}^+} \binom{1/2}{n} (-4)^n x^{n-1} + \binom{1/2}{0} (-4)^0 x^{-1} \quad \text{(rewriting)}
\]
\[
= \sum_{n \in \mathbb{N}} \binom{1/2}{n+1} (-4)^{n+1} x^n \quad \text{(simplifying, index change)}.
\]

We now read off the coefficients and obtain that
\[
c_n = \binom{1/2}{n+1} \frac{(-4)^{n+1}}{-2}
\]
\[
= \frac{1}{n+1} \cdot \frac{2 \cdot 1 - 1}{2 \cdot 2 - 1} \cdots \frac{1}{2} \cdot n \cdot (-4)^{n+1} \quad \text{(Definition 5.5.18)}
\]
\[
= \frac{(2 \cdot 1 - 1) \cdot (2 \cdot 2 - 1) \cdots (2 \cdot n - 1)}{(n+1)!} \cdot \frac{2^{n+1}}{2} \quad \text{(rewriting)}
\]
\[
= \frac{1}{n+1} \cdot \frac{2 \cdot 1 \cdots (2n-1)}{n!} \cdot \frac{2^{n+1}}{2} \quad \text{(rewriting)}
\]
\[
= \frac{1}{n+1} \cdot \binom{2n}{n} \quad \text{(by definition)}.
\]

\(\square \)

Note that we can use Stirling’s formula (Section 5.7.5) to obtain formulas for the asymptotic growth of the Catalan numbers.

5.6.4. Further correspondences. There are many classes of combinatorial objects where the objects with \(n \) elements are in bijective correspondence with binary trees of size \(n \).

- We have defined convex \(n \)-gons already in Section 4.5.2. Every convex \(n \)-gon \(\{p_1, \ldots, p_n\} \) has exactly \(c(n) \) partitions of the convex hull of \(p_1, \ldots, p_n \) in triangles with endpoints from \(p_1, \ldots, p_n \) (also called triangulations). In Figure 5.4 are depicted \(c(3) = 5 \) partitions of a convex 5-gon.
• There are \(c(n) \) possible bracketings of a product with \(n + 1 \) factors (and \(n \) multiplications). For example, we have \(c(3) = 5 \) such bracketings of the factors \(x_1, \ldots, x_4 \):

\[
\begin{align*}
(x_1x_2)(x_3x_4), \\
(x_1(x_2x_3))x_4, \\
x_1((x_2x_3)x_4), \\
((x_1x_2)x_3)x_4, \\
\text{and } x_1(x_2(x_3x_4))
\end{align*}
\]

• There are \(c(n) \) sequences \(a_1, \ldots, a_{2n} \) with \(a_i \in \{1, -1\} \) such that \(\sum_{i=1}^{2n} a_i = 0 \) and \(\sum_{i=1}^{k} a_i \geq 0 \) for all \(k \leq n \). Here we have for \(n = 3 \) precisely the following five sequences:

\[
\begin{align*}
(1, 1, 1, -1, -1, -1) \\
(1, 1, -1, 1, -1, -1) \\
(1, 1, -1, -1, 1, -1) \\
(1, -1, 1, 1, -1, -1) \\
(1, -1, 1, -1, 1, -1).
\end{align*}
\]

5.7. Exponential Generating Functions

The generating functions that we have seen so far are also called ordinary generating functions, to distinguish them from other generating functions that exist, such as exponential generating functions or Dirichlet generating functions. Depending on the enumeration problem that we want to study, those might be more appropriate. To give you an idea how to vary what we have learned about ordinary generating functions, we discuss the equally important exponential generating functions and their applications in this section.

5.7.1. Labelled enumeration. How many graphs are there with \(n \) vertices?

This question needs to be formulated more carefully, since we have not yet specified the vertex set of the trees, so phrased like this the answer would be: infinitely many. There are two different ways to turn this question into a meaningful question.
5.7. EXPONENTIAL GENERATING FUNCTIONS

The first is: how many graphs with \(n \) vertices are there up to isomorphism? That is, we want to count the number of equivalence classes of the equivalence relation induced by graph isomorphism (Definition 1.0.2) on the class of all trees. Clearly, for each \(n \) this number \(u_n \) will be finite. We also say that \(u_n \) is the number of unlabelled graphs with \(n \) vertices.

The second way is to count the number of graphs with the vertex set \([n]\). This number is bigger than \(u_n \) and will be denoted by \(l_n \). For instance, for \(n = 3 \) we have \(u_3 = 4 \), but \(l_3 = 8 \). We say that \(l_n \) is the number of labelled graphs with \(n \) vertices.

The same distinction can be made for counting the structures of size \(n \) in various classes of combinatorial objects, like hypergraphs, directed graphs, etc. There is no general simple way to translate between the two settings. For illustration, we describe two extreme situations.

Example 5.7.1. There is precisely one labelled independent set of size 1, and there is precisely one independent set of size 1 up to isomorphism; so for counting the number of independent sets, there is no difference between the labelled and the unlabelled count.

Example 5.7.2. Up to isomorphism, there is precisely one linear order with \(n \) elements. However, there are \(n! \) many linear orders on the set \([n]\). So, for linear orders we have the maximal possible difference between the labelled and the unlabelled count.

Typically, for labelled enumeration problems the exponential generating function is more appropriate.

5.7.2. The exponential generating function. The exponential generating function of a sequence \((a_n)_{n \in \mathbb{N}}\) is the formal power series

\[
A(x) = \sum_{n \in \mathbb{N}} a_n \frac{x^n}{n!}.
\]

We can recover the coefficients of an exponential generating function \(A(x)\) in the obvious way, by the formula

\[
a_n = n! \cdot [x^n]A(x).
\]

Example 5.7.3. For every \(n \in \mathbb{N} \), the number of linear orders on \([n]\) is \(n! \), and the corresponding exponential generating function is

\[
\sum_{n \in \mathbb{N}} \frac{n!}{n!} x^n = \frac{1}{1-x}.
\]

Example 5.7.4. For every \(n \in \mathbb{N} \), the number of directed cycles on \([n]\) is \((n-1)!\): we choose a first element on the cycle, then from the remaining elements we choose the next, and so on. In this way we have counted each directed cycle \(n \) times since we do not care where the cycle starts. The exponential generating function for these numbers is

\[
\sum_{n \in \mathbb{N}} \frac{(n-1)!}{n!} x^n = \sum_{n \in \mathbb{N}} \frac{1}{n} x^n = \ln \frac{1}{1-x}.
\]

Concerning the last equation, observe that \(\ln \frac{1}{1-x} = \ln(1) - \ln(1-x) \) and recall from (39) that \(\ln(1+x) = \sum_{n \in \mathbb{N}^+} \frac{(-1)^{n-1}}{n} x^n \), so \(\ln(1-x) = \sum_{n \in \mathbb{N}^+} \frac{1}{n} x^n \) and the equation follows.

Example 5.7.5. For every \(n \in \mathbb{N} \), the number of cliques on \([n]\) is 1. The exponential generating function for the sequence \(1 = a_0 = a_1 = \cdots \) is

\[
\sum_{n \in \mathbb{N}} \frac{1}{n!} x^n = \exp(x).
\]
Clearly, if $A(x)$ is the exponential generating function for $(a_n)_{n \in \mathbb{N}}$ and $B(x)$ is the exponential generating function for $(b_n)_{n \in \mathbb{N}}$, then $A(x) + B(x)$ is the exponential generating function for $(a_n + b_n)_{n \in \mathbb{N}}$. This formula is useful when we want to count classes of combinatorial objects that are composed from two disjoint classes of structures.

For multiplication, recall that
\[
[x^n]A(x)B(x) = \sum_{k \in \{0, \ldots, n\}} \frac{a_k b_{n-k}}{k! (n-k)!}
\]
which shows that $A(x)B(x)$ is the exponential generating function for
\[
\left(\sum_{k \in \{0, \ldots, n\}} \binom{n}{k} a_k b_{n-k} \right)_{n \in \mathbb{N}}.
\]
(44)

As we will see, in many contexts this sequence has an interesting combinatorial interpretation. Instead of formulating a general lemma we will illustrate this by examples later.

For differentiation, note that $A'(x)$ is the exponential generating function for $(a_n+1)_{n \in \mathbb{N}}$. The situation here is simpler than the corresponding situation for ordinary generating functions: the ordinary generating function of $(a_n+1)_{n \in \mathbb{N}}$ is $A(x) - A(0)$ where $A(0)$ stands for $[x^0]A(x)$.

Finally, for composition note that $[x^n]A(B(x)) = \sum_{k \in \mathbb{N}, j_1, \ldots, j_k \in \mathbb{N}^+, j_1 + \cdots + j_k = n} \frac{a_k b_{j_1} \cdots b_{j_k}}{j_1! \cdots j_k!}$ which shows that $A(B(x))$ is the exponential generating function for
\[
\left(\sum_{k \in \mathbb{N}, j_1, \ldots, j_k \in \mathbb{N}^+, j_1 + \cdots + j_k = n} \binom{n}{j_1, \ldots, j_k} a_k b_{j_1} \cdots b_{j_k} \right)_{n \in \mathbb{N}}
\]
where
\[
\binom{n}{j_1, \ldots, j_k} := \frac{n!}{j_1! \cdots j_k!}
\]
is the so-called multinomial coefficient counting the number of partitions of $[n]$ into sets of size j_1, \ldots, j_k.

5.7.3. The Bell numbers. Let b_n be the number of partitions of $[n]$ (equivalently, the number of equivalence relations on the set $[n]$); these numbers are called the Bell numbers. They satisfy the following recurrence formula:
\[
b_{n+1} = \sum_{k \in \{0, \ldots, n\}} \binom{n}{k} b_k.
\]
(45)
The reason is that in order to form a partition, we choose for some k the k elements that do not lie in the equivalence class containing the largest element, and multiply with the number of elements to form a partition with those elements.

Let $B(x)$ be the exponential generating function for $(b_n)_{n \in \mathbb{N}}$. We multiplying both sides of the recurrence formula (45) with x^n and summing over all $n \in \mathbb{N}$. On the left hand side, we obtain $B'(x)$. On the right hand side, we obtain $\exp(x)B(x)$
since \(\exp(x) \) is the exponential generating function for the constant-one sequence (recall 14). Hence, we get the differential equation

\[
B'(x) = \exp(x)B(x)
\]

which has the unique solution \(B(x) = c \exp(\exp(x)) \), and since \(B(0) = 1 \) we must have \(c = e^{-1} \), so

\[
B(x) = \exp(\exp(x) - 1).
\]

Now, \(b_n \) can be computed as follows (Dobiński’s formula). Let \(g: \mathbb{R} \to \mathbb{R} \) be the function \(x \mapsto e^{e^x} \). Then

\[
b_n = n![x^n] \exp(\exp(x) - 1).
\]

\[
= \frac{1}{e} \sum_{k \in \mathbb{N}} \left(\frac{e^k x}{k!} \right)^{(n)} (0)
\]

\[
= \frac{1}{e} \sum_{k \in \mathbb{N}} \frac{k^n}{k!}.
\]

5.7.4. 2-regular graphs. A graph is 2-regular if all its vertices have degree two; note that such a tree is a disjoint union of cycles. In this section we want to count the number of labelled 2-regular graphs with \(n \) vertices. For \(n \leq 2 \) there are no undirected cycles at all. For \(n \geq 3 \), there are \(\frac{(n-1)!}{2} \) many cycles with vertex set \([n]\): we choose a first vertex, under the remaining vertices we choose a second, etc. This gives us \(n! \), but we have over-counted since we do not care where to start the cycle, and we do not care about the direction of the cycle, so we have to divide by \(2n \) which gives the formula.

Therefore, the exponential generating function \(C(x) \) for labelled cycles is

\[
C(x) = \sum_{n \geq 3} \frac{(n-1)!}{2n!} x^n
\]

\[
= \frac{1}{2} \sum_{n \geq 4} x^n = \frac{1}{2} \left(\ln \frac{1}{1-x} - x - \frac{x^2}{2} \right).
\]

The exponential generating function for 2-regular graphs is

\[
\exp(C(x)) = \exp \left(\frac{1}{2} \left(\ln \frac{1}{1-x} - x - \frac{x^2}{2} \right) \right) = \frac{e^{-x/2-x^2/4}}{\sqrt{1-x}}.
\]

The radius of convergence is \(r = 1 \) (we see that this function is singular at \(x = 1 \) where it has a branch point). By a technique called singularity analysis (we refer to 8 for this more advanced topic) one can show that

\[
[x^n] C(x) = \frac{e^{-1/4}}{\sqrt{\pi n}} - \frac{5e^{-3/4}}{8\sqrt{\pi n^3}} + O \left(\frac{1}{n^{5/2}} \right).
\]

5.7.5. Permutations and Stirling’s formula. A permutation of \([n]\) is a bijective between \([n]\) and itself; there are \(n! \) many permutations of \([n]\). Permutations of \([n]\) can be thought of as a directed graph with vertex set \([n]\) where each vertex has indegree one (precisely one predecessor) and outdegree one (precisely one successor). Clearly, such digraphs are disjoint unions of directed cycles (loops are allowed). Labelled directed cycles have been counted already in Example 5.7.4 and they have the
generating function $\ln\left(\frac{1}{1-x}\right)$. We conclude that the exponential generating function for the number of all labelled permutations is

$$\exp(\ln\left(\frac{1}{1-x}\right)) = \frac{1}{1-x} = \sum_{n \in \mathbb{N}} x^n$$

as we have seen already in Example 5.7.3.

Stirling’s formula is an approximation for $n!$, and in one of the formulations states that

$$n! \in \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \left(1 + O\left(\frac{1}{n}\right)\right)$$

or, phrased differently,

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

This approximation has an excellent quality, as the following table shows; the error is below 1% already for $n = 10$.

<table>
<thead>
<tr>
<th>n</th>
<th>1.084437</th>
<th>1.042207</th>
<th>1.016783</th>
<th>1.008365</th>
<th>1.000833</th>
<th>1.000083</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/e</td>
<td>$e^{-n\sqrt{2\pi n}}$</td>
<td>$e^{-n\sqrt{2\pi n}}$</td>
<td>$e^{-n\sqrt{2\pi n}}$</td>
<td>$e^{-n\sqrt{2\pi n}}$</td>
<td>$e^{-n\sqrt{2\pi n}}$</td>
<td>$e^{-n\sqrt{2\pi n}}$</td>
</tr>
</tbody>
</table>

We give a simple proof of a weaker version, namely that for all $n \geq 2$ we have

$$n \ln n - n < \ln(n!) < n \ln n$$

and therefore

$$\ln(n!) \sim n \ln n.$$

The inequality $\ln(n!) < n \ln n$ is a consequence of the trivial inequality $n! < n^n$. For the other inequality, we use the power series expansion of e^x,

$$e^x = \sum_{n \in \mathbb{N}} \frac{x^n}{n!}$$

Comparing e^n to the n-th term in the series gives $\frac{n^n}{e^n} < e^n$, so $\frac{2^n}{e^n} < n!$. Therefore $n \ln n - n < \ln(n!)$. Dividing the inequalities $n \ln n$ we obtain

$$1 - \frac{1}{\ln n} < \frac{\ln(n!)}{n \ln n} < 1$$

and hence $\ln(n!) \sim n \ln n$. This formula is already sufficient for many applications where we need an asymptotic bound for the factorial.

The known proofs of Stirling’s formula in the stronger formulation above are substantially more involved; several very different proofs (one of them using singularity analysis) can be found in Flajolet and Sedgewick [8].

Via the binomial coefficients, Stirling’s formula for the factorial enters in many asymptotic estimations; we give a classical example.

Example 5.7.6. Recall that the Catalan numbers c_n are given by

$$c_n = \frac{1}{n+1} \binom{2n}{n} = \frac{1}{n+1} \frac{(2n)!}{n!n!}.$$

We can now use Stirling’s formula to obtain

$$c_n \sim \frac{1}{n} \frac{(2n)2^n e^{-2n} \sqrt{4\pi n}}{n^{2n} e^{-2n} 2\pi n} \sim \frac{4^n}{\sqrt{\pi n^3}}$$

(and the error is for $n \geq 100$ below 1%).
5.7.6. Labelled graphs and labelled connected graphs. Clearly, there are \(2^n\) labelled graphs with \(n\) vertices. How many connected labelled graphs with \(n\) vertices are there? Let \(G(x)\) be the exponential generating function for the number \(d_n\) of labelled graphs on \(n\) vertices, and let \(C(x)\) be the exponential generating function for the number \(c_n\) of labelled connected graphs with \(n\) vertices. Note that \(G(x)\) does not converge for any \(x \neq 0\) (\(d_n\) simply grows too rapidly) so we cannot apply analytic techniques here, but \(G(x)\) and \(C(x)\) are perfectly well-defined formal power series. We have

\[G(x) = \exp(C(x)) \]

since every graph is uniquely given as the disjoint union of connected graphs.

It follows that the number of connected labeled graphs with \(n\) vertices satisfies

\[n2^n = \sum_{k \in \mathbb{N}} \binom{n}{k} k! 2^{n-k}. \]

Solving this equation for \(c_n\) in terms of \(c_k\) for \(k < n\), we obtain a recurrence formula from which we can compute \(c_n\) for small values of \(n\): the sequence starts with

\[1, 1, 4, 28, 728, 26704, 1866256, 251548592, \ldots \]

5.8. The Lagrange Inversion Formula

The Lagrange inversion formula can be used to access the coefficients of generating functions that are implicitly given. We will use it to prove Cayley’s formula for the number of labelled connected graphs with \(n\) vertices. In its simplest form, the Lagrange inversion formula expresses the \(n\)-th coefficients of the inverse of a power series \(A(x)\) in terms of the reciprocal of an \(n\)-th power of \(A(x)\). If \(A(x)\) is invertible then \([x^n]A(x) = 0\) and hence \(A(x)\) and powers of \(A(x)\) do not have a reciprocal in \(R[[x]]\) even if \(R\) is a field. However, \(A(x)\) has a multiplicative inverse in the larger ring \(R((x))\) of formal Laurent series that will be introduced in the next section.

5.8.1. Laurent series. Informally, the ring \(R((x))\) of formal Laurent series compares to the ring \(R[[x]]\) of formal power series in the same way as the ring \(R(x)\) of rational functions compares to the ring \(R[x]\) of polynomials. Formally, a Laurent series is a formal expression of the form

\[A(x) = \sum_{i \in \mathbb{Z}} a_i x^i \]

where \(a_i = 0\) for all but finitely many negative \(i\). We define \([x^i]A(x) := a_i\) for all \(i \in \mathbb{Z}\). Addition, multiplication, differentiation, and composition can be defined similarly as for formal power series and as expected. For example, for \(A, B \in R((x))\) the product \(A \cdot B\) is defined by defining for \(k \in \mathbb{Z}\)

\[[x^k]A(x)B(x) := \sum_{i \in \mathbb{Z}} [x^i]A[x^{k-i}]B. \]

For \(A \neq 0\) we write \(\text{ord}(A)\) for the smallest \(i \in \mathbb{Z}\) such that \(a_i \neq 0\). Note that every Laurent series \(A(x) \in R((x))\) can be written as \(p(x) + B(x)\) where \(B(x) \in R[[x]]\) and \(p(x)\) is a polynomial (of degree \(\text{ord}(A)\)).

The coefficient of \(x^{-1}\) in a Laurent series \(A(x)\) is of particular interest, as we see in the following lemma; it is called the formal residue of \(A(x)\).

Lemma 5.8.1. Let \(K\) be a field of characteristic 0 and let \(A, B \in K((x))\).

1. \([x^{-1}]A'(x) = 0\).
2. \([x^{-1}]A \cdot B' = -[x^{-1}]A' \cdot B\).
3. \([x^{-1}]A'/A = \text{ord}(A)\) if \(A \neq 0\).
(4) \([x^{-1}](A \circ B)B' = [x^{-1}]A\) if \(\operatorname{ord}(B) > 0\).

Proof. (1) is clear from the definition of differentiation. To see (2), note that

\[0 = [x^{-1}](A \cdot B)' = [x^{-1}](AB' + A'B)\]

and the statement follows.

We show (3). Any non-zero \(A \in R((x))\) can be written as \(A = x^m C\) for \(m := \operatorname{ord}(A) \in \mathbb{Z}\) and some \(C \in K[[x]]\) where \(\operatorname{ord}(C) = 0\). Then

\[
\frac{A'}{A} = \frac{(x^m C)'}{x^m C} = \frac{dx^{m-1} C}{x^m C} + \frac{x^m C'}{x^m C} = \frac{m}{x} + \frac{C'}{C}.
\]

Since \(\operatorname{ord}(C) = 0\) we have

\[
[x^{-1}]\frac{C'}{C} = \sum_{i \in \mathbb{Z}} [x^i]C'[x^{-1-i}]C^{-1} = 0
\]

and it follows that

\[
[x^{-1}]\frac{A'}{A} = \text{underlined} \underbrace{[x^{-1}]mx^{-1}}_{=m} + \underbrace{[x^{-1}]\frac{C'}{C}}_{=0} = m = \operatorname{ord}(A).
\]

We show (4). Let \(a_{-1} := [x^{-1}]A(x)\). First note that \(A = a_{-1}x^{-1} + C'\) for some \(C \in K[[x]]\). Hence,

\[
[x^{-1}](A \circ B)B' = [x^{-1}](a_{-1}(x^{-1} \circ B)B' + [x^{-1}](C' \circ B)B')
\]

\[= a_{-1}[x^{-1}]B^{-1}B' + [x^{-1}](C \circ B)'
\]

\[= a_{-1}[x^{-1}]B'/B\] (using (1))

\[= a_{-1} \quad \text{(using (3), \(\operatorname{ord}(B) = 1\)).}
\]

5.8.2. Lagrange inversion. We now prove the Lagrange inversion formula for obtaining the coefficients of the inverse \(B(x)\) of \(A(x)\) (there exist more general formulations of the Lagrange inversion formula).

Theorem 5.8.2. Suppose that \(A \in K[[x]]\) has an inverse \(B\). Then

\([x^n]B = \frac{1}{n}[x^{-1}]A^{-n}\).

Proof.

\([x^n]B = [x^{-1}]B \cdot x^{-n-1}
\]

\[= [x^{-1}]((B \cdot x^{-n-1}) \circ A)A' \quad \text{(Lemma \[5.8.1\] item (4))}
\]

\[= [x^{-1}](B \circ A) \cdot A^{-n-1}A' \quad \text{(a composition rule)}
\]

\[= [x^{-1}]xA^{-n-1}A' \quad \text{(since} B(A(x)) = x\text{)}
\]

\[= -\frac{1}{n}[x^{-1}]x(A^{-n})' \quad \text{(definition of derivation)}
\]

\[= \frac{1}{n}[x^{-1}]A^{-n} \quad \text{(Lemma \[5.8.1\] item (2)).}
\]
5.8.3. Labelled trees. For \(n \in \mathbb{N} \), let \(t_n \) be the number of trees with vertex set \([n]\). Since trees are required to have at least one vertex, we have \(t_0 = 0 \), and clearly \(t_1 = 1 \). Using the Lagrange inversion formula, we will prove Cayley’s formula; there are now different, more direct combinatorial proofs of the formula, e.g. via Prüfer codes (from 1918). Let us point out that the symbolic proof via generating functions has been found first!

Theorem 5.8.3 (Cayley 1889). For every \(n \in \mathbb{N}^+ \)

\[
t_n = n^{n-2}.
\]

To prove this result we use an important idea in combinatorial enumeration: the idea to root objects. A rooted tree is a tree with one distinguished vertex, the root. A finite rooted tree can be obtained recursively as follows: we recursively construct a set of smaller rooted trees \(T_1, \ldots, T_k \) with vertex sets \([n_1], \ldots, [n_k]\), respectively, such that \(n_1 + \cdots + n_k = n - 1 \). Note that \(k = 0 \) is allowed; this will be the base case of the recursive description. We then rename the vertices of \(T_1, \ldots, T_k \) such that \(V(T_1) \cup \cdots \cup V(T_k) = [n-1] \), and create a tree \(T \) with vertex set \([n]\) and root \(n \) by joining \(n \) with each of the roots of \(T_1, \ldots, T_k \). Let \(r_n \) be the number of rooted trees with vertex set \([n]\); clearly, \(r_n = n \cdot t_n \).

Let \(R(x) := \sum_{n \in \mathbb{N}} \frac{r_n}{n!} x^n \) be the exponential generating function for \((t_n)_{n \in \mathbb{N}}\). With a bit of practice, it can be seen directly from the recursive description above that

\[
R(x) = x \exp(R(x))
\]

(alternatively, use the description above to write down a recurrence formula for \(r_n \), multiply with \(x^n \), and sum over all \(n \in \mathbb{N} \) to then obtain the equation, as we have practiced numerous times by now).

The central idea to use the Lagrange inversion formula here is the observation that \(R(x) \) can be viewed as the inverse of \(S(x) := \exp(x) \) (which is infinitely often differentiable in 0, so gives rise to a formal power series by (38)), since then the identity \(S(R(x)) = x \) is equivalent to (46). To access the coefficients of \(R(x) \), we can therefore use Lagrange inversion (Theorem 5.8.2):

\[
[x^n]R(x) = \frac{1}{n} [x^{-1}]S(x)^{-n} = \frac{1}{n} [x^{-1}] \left(\frac{e^x}{x} \right)^n = \frac{1}{n} [x^{n-1}] e^{nx} = \frac{n^{n-1}}{n (n - 1)!} (\text{see (38)})
\]

Hence, we have

\[
r_n = n! [x^n] R(x) = n^{n-1}
\]

and

\[
t_n = \frac{r_n}{n} = n^{n-2}
\]

which concludes the proof of Theorem 5.8.3.

Exercises.

(45) Determine the exponential generating function for the number of maps from \([n] \to [n]\) and find a formula for this number.
Bibliography

79
APPENDIX A

Basics from calculus

We first recall the formal definition of convergence. Let \((P, \leq) \) be a partially ordered set. A upper (lower) bound of \(S \subseteq P \) is an element \(p \in P \) that is larger (smaller) than all elements of \(S \). An upper bound \(b \) is called a supremum (infimum) of \(S \) if \(b \) larger than all other upper bounds of \(S \) in \(P \), and written by \(\text{sup}(S) \). Suprema and infima do not necessarily exist. But every non-empty subset \(S \) of the real numbers \(\mathbb{R} \) has a supremum and an infimum (by the definition of \(\mathbb{R} \)).

Definition A.0.1. Let \((a_n)_{n \in \mathbb{N}} \) be a sequence of numbers in \(\mathbb{R} \).

- Then the limit superior of \((a_n)_{n \in \mathbb{N}} \) is an element of \(\mathbb{R} \cup \{-\infty, +\infty\} \) defined as
 \[
 \limsup_{n \to \infty} a_n := \inf_{n \to \infty} \left(\sup_{m \geq n} x_m \right).
 \]
- The limit inferior of \((a_n)_{n \in \mathbb{N}} \) is an element of \(\mathbb{R} \cup \{-\infty, +\infty\} \) defined as
 \[
 \liminf_{n \to \infty} a_n := \sup_{n \to \infty} \left(\inf_{m \geq n} x_m \right).
 \]
- \((a_n)_{n \in \mathbb{N}} \) converges if
 \[
 \limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n =: \lim_{n \to \infty} a_n \in \mathbb{R};
 \]
equivalently, \(\lim(a_n)_{n \in \mathbb{N}} \) if and only if for every \(\epsilon > 0 \) there exists an \(m > 0 \) such that for all \(n \geq m \) \(|f(a_n) - f(a)| < \epsilon \).

Let \(S \subseteq \mathbb{R} \), let \(z \in S \), and \(f : S \to \mathbb{R} \). We write \(\lim_{a \to z} f(a) = b \) if for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that for all \(a \in S \) with \(|a - z| < \delta \) we have \(|f(a) - f(z)| < \epsilon \).

The definitions for complex-valued functions is analogous. It is a basic lemma in calculus that limits in \(\mathbb{C} \) can be evaluated componentwise: we identity \(\mathbb{C} \) with \(\mathbb{R}^2 \).

Then \((a_n)_{n \in \mathbb{N}} \) converges against \(a \) if the sequence of real parts converges against the real part of \(a \) and the sequence of imaginary parts converges against the imaginary part of \(a \).

A.1. Divergence and Convergence Tests

We recall some of the basic divergence and convergence tests.

Lemma A.1.1 (term divergence test). If \(\lim_{n \to \infty} a_n \) does not exist or \(\lim_{n \to \infty} \neq 0 \), then \(\sum_{n \in \mathbb{N}} a_n \) diverges.

Proof. We show the contrapositive: if \(\sum_{n \in \mathbb{N}} a_n \) converges, then \(\lim_{n \to \infty} a_n = 0 \). Writing \(s_n \) for \(\sum_{i=0}^{n} a_i \) and \(\ell \) for \(\lim_{n \to \infty} s_n \), we have

\[
\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = \ell - \ell = 0.
\]

\(\square \)

Lemma A.1.2 (comparison test). If \(\sum_{n \in \mathbb{N}} b_n \) converges, and there exists an \(m \in \mathbb{N} \) such that \(0 \leq a_n \leq b_n \) for all \(n \geq m \), then \(\sum_{n \in \mathbb{N}} a_n \) converges, too.
Proof. Let $s_n := \sum_{i=0}^n a_i$. Then $s_{n-1} = a_{n+1} \geq 0$ for all $n \geq m$. So $s_{n+1} \geq s_n$ which means that s_n is non-decreasing. It is one of the fundamental properties of real numbers that a non-decreasing sequence converges if it has an upper bound. Such an upper bound exists since

$$s_n = a_0 + a_1 + \cdots + a_n \leq b_0 + b_1 + \cdots + b_n$$

$$\leq b_0 + b_1 + \cdots + b_n + b_{n+1} + \cdots$$

□

A sequence $(a_n)_{n \in \mathbb{N}}$ of real or complex numbers is called a Cauchy sequence if and only if for every $\epsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that for all $n, m \geq n_0$ we have $|a_m - a_n| < \epsilon$. Since the real and complex numbers are complete a sequence converges if and only if it is a Cauchy sequence. This condition is useful since we do not need to know the limit of the sequence in order to prove convergence. It gives the following convergence test for series.

Lemma A.1.3 (Cauchy’s convergence test). $\sum_{n \in \mathbb{N}} a_i$ is convergent if and only if for every $\epsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that $|a_{n+1} + a_{n+2} + \cdots + a_{n+p}| < \epsilon$ for all $n > n_0$ and $p \in \mathbb{N}$.

Proof. Let $s_n := \sum_{m=0}^n a_m$. By definition, the series $\sum_{n \in \mathbb{N}} a_i$ is convergent if and only if $(s_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. Writing out this last condition we arrive at the statement. □

And we have a further divergence test.

Lemma A.1.4 (tail of convergent series tends to zero). Let $\sum_{n \in \mathbb{N}} a_n$ be a convergent series in \mathbb{C}. Then $b_m := \sum_{n=m}^\infty a_n$ converges and $\lim_{m \to \infty} b_m = 0$.

Proof. The convergence of $\sum_{n=m}^\infty a_n$ follows immediately from Cauchy’s test. We have $\sum_{n=m}^\infty a_n = \sum_{n=0}^\infty a_{n+m}$. Since $\lim_{m \to \infty} \sum_{n=0}^m a_n = \sum_{n \in \mathbb{N}} a_n$ we have that $\lim_{m \to \infty} b_m = 0$. □
APPENDIX B

What every mathematician needs to know about complexity theory

For a set A, we write A^* for the set of all words over the alphabet A. A word over A can be seen as a function from $\{1, \ldots, n\} \rightarrow A$, for some $n \in \mathbb{N}$. We write ϵ for the empty word (i.e., for the function with the empty domain).

The most classical setting of complexity theory is the study of the computational complexity of functions f from $\{0, 1\}^* \rightarrow \{0, 1\}$. Alternatively, we may view f as a set of words, namely that set of words w such that $f(w) = 1$; such sets are also called formal languages. There are several mathematically rigorous machine models to formalise the set of such functions that are computable or efficiently computable. The first insight is that most of these machine models lead to the same, or to closely related classes of functions. Complexity theory maps out the landscape of the resulting classes of functions. Typically the first machine model that is introduced in introductory courses are Turing machines. They strike a good balance between the following two requirements that a theoretician has for those machine models:

- It should be relatively simple, so that it is easy to show that it can be simulated by many other machine models.
- It should be relatively easy to program within the machine model, so that it is easy to show that it can simulate many other machine models.

Turing machines are simple, but still the definition does not easily fit into a few lines. On the other hand, today academics are most likely to already have a very good idea of what a computer program can do (in polynomially many steps); and this coincides with what a Turing machine M can do (in polynomially many computational steps). So we will pretend in the following that the reader already knows what Turing machines M are. Every Turing machine describes a formal language, namely the function $f: \{0, 1\}^* \rightarrow \{0, 1\}$ such that $f(w) = 1$ if and only if when running the machine on input w it terminates and accepts. We also say that M computes f, and we then sometimes write $M(f)$ instead of $f(w)$. More generally, Turing machines can be used to describe functions f from $\{0, 1\}^*$ to $\{0, 1\}^*$ where $f(w)$, for a given word w, is the string that is written on the output tape when the Turing machine accepts (here we require that the machine terminates on every input after finitely many steps, and again we say that M computes f).

In complexity theory we are interested in the number of computation steps that M needs to perform to compute $f(w)$, which corresponds to computation time. For example, we say that a Turing machine runs in polynomial time if the number of computation steps is in $O(|w|^k)$ for some $k \in \mathbb{N}$. The class of such functions is denoted by P.

Coding. In the combinatorics course we have met computational complexity for example in the section about colorability. We mentioned that 2-colorability is in P and that k-colorability is NP-hard. But these were problems about finite graphs, whereas in the above we only treated formal languages. But this is just a matter of
coding. We first observe that we can simulate any alphabet by our alphabet \{0, 1\}, by just grouping bits together to represent a richer alphabet. In particular, we will typically use the letter \# to separate different numbers in the input. One way to represent a graph as a word is to first write the number \(n\) of vertices, followed by the symbol \#, followed by a sequence of \(n^2\) bits for the adjacency matrix.

The second most important complexity class is \(\text{NP}\).

Definition B.0.1. \(\text{NP}\) (for *nondeterministic polynomial time*) stands for the class of all functions \(f: \{0, 1\}^* \rightarrow \{0, 1\}\) such that there exists a polynomial-time Turing machine \(M\) and a \(d \in \mathbb{N}\) such that for every \(w \in \{0, 1\}^*\) there exists a \(a \in \{0, 1\}^*\) with \(|a| \in O(n^d)\) such that \(f(w) = M(w\#a)\).

It is a famous open problem whether \(P = \text{NP}\), and it is widely conjectured that \(P \neq \text{NP}\). To explain the significance of this conjecture, we need a couple of more concepts. Let \(f_1, f_2: \{0, 1\}^* \rightarrow \{0, 1\}\). A *reduction* from \(f_1\) to \(f_2\) is a function \(g: \{0, 1\}^* \rightarrow \{0, 1\}^*\) such that \(f_1(w) = f_2(g(w))\). A reduction \(g\) is *polynomial-time* if \(g\) can be computed by a Turing machine that runs in polynomial time.

Definition B.0.2. A function \(f: \{0, 1\}^* \rightarrow \{0, 1\}\) is *NP-hard* if every function \(g\) in \(\text{NP}\) has a polynomial-time reduction to \(f\). A function is called *NP-complete* if it is in \(\text{NP}\) and NP-hard.

The class \(\text{coNP}\) is dual to \(\text{NP}\): it is the class of all functions \(f\) such that \(1 - f\) is in \(\text{NP}\). There is an analogous definition for any complexity class \(K\): a function is in \(\text{co-K}\) if \(1 - f\) is in \(K\). Clearly, every function in \(P\) is both in \(\text{NP}\) and in \(\text{coNP}\). There are some problems that are simultaneously in \(\text{NP}\) and in \(\text{coNP}\), but that are not known to be in \(P\): we have seen some examples in Chapter 2.

A class of finite graphs \(C\) is in \(\text{NP}\) if there exists a formal language in \(\text{NP}\) such that each word in the language codes a graph in \(C\) (say in the way we described above), and every graph in \(C\) is coded by some word in the language. Unlike the class \(P\), it is possible to define the class of all graph classes in \(\text{NP}\) transparently and fully formally in a few lines (without any reference to Turing machines).

Theorem B.0.3 (Fagin). A class of finite graphs \(C\) is in \(\text{NP}\) if and only if there exists an existential second-order sentence \(\Phi\) such that for every finite graph \(G\) we have \(G \in C\) if and only if \(G \models \Phi\).

We do not define *existential second-order logic* here. The interested reader is referred to a textbook on finite model theory to learn more about such connections between logic and complexity theory, e.g. \cite{17}.

We now return to the question why most researchers believe that \(P \neq \text{NP}\). In order to show that \(P=\text{NP}\) is sufficient to provide for *any* of the known \(\text{NP}\)-complete problems a polynomial-time algorithm. There are many \(\text{NP}\)-complete problems that are of central importance in optimisation, scheduling, cryptography, bioinformatics, artificial intelligence and many more areas. If \(P=\text{NP}\), then this would mean a simultaneous breakthrough in all of these areas. It is fair to say that every day, thousands of researchers are directly or indirectly working on proving that \(P=\text{NP}\) (since they work on things that are related to the better understanding of some \(\text{NP}\)-complete problem). The fact that nobody has succeeded (not even came close to) is one of the reasons why we believe that \(P\) cannot be equal to \(\text{NP}\). A world where \(P = \text{NP}\) would probably be drastically different from the world we live in.

On the other hand, we also have no clue on how to possibly prove that \(P \neq \text{NP}\). Quite a bit is known about approaches to proving \(P \neq \text{NP}\) that must fail.
APPENDIX C

Basic Set Theory

In this appendix chapter we freely follow Appendix A of the book of Tent and Ziegler [28]. See [14] for a more detailed introduction to set theory.

C.1. Sets and Classes

We often speak of the class of all graphs or the class of all ordinals, since we know that these things cannot be sets (as we will see in the next section, if the class of all ordinals were a set, we could derive a contradiction). Using first-order logic, we therefore want to give an axiomatic treatment of set theory that allows for the distinction between sets and (proper) classes. For this, we may work in Bernays-Gödel set theory (BG) which is formulated in a two-sorted language. One type of objects are sets and the other type of objects are classes; sets can be elements of sets, and sets can be elements of classes, but classes can’t be elements of sets or classes.

Here are the axioms of BG:

1. (a) **Extensionality.** Sets containing the same elements are equal:
\[
\forall x, y \in \text{Sets} \ (\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y)
\]

(b) **Empty set.** There exists an empty set (denoted by \(\emptyset\)):
\[
\exists x \in \text{Sets} \ \forall y (\neg y \in x)
\]

(c) **Pairing.** For all sets \(a\) and \(b\) there is a set (denoted by \(\{a, b\}\)) which has exactly the elements \(a\) and \(b\):
\[
\forall a, b \in \text{Sets} \ \exists c \in \text{Sets} \ \forall x (x \in c \Leftrightarrow x = a \lor x = b)
\]

(d) **Union.** For every set \(a\) there is a set (denoted by \(\bigcup a\)) that contains precisely the elements of the elements of \(a\):
\[
\forall a \in \text{Sets} \ \exists b \in \text{Sets} \ \forall x (x \in b \Leftrightarrow \exists y \in a. x \in y)
\]

(e) **Power set.** For every set \(a\) there is a set (denoted by \(P(a)\)) that consists of all subsets of \(a\):
\[
\forall a \in \text{Sets} \ \exists b \in \text{Sets} \ \forall x (x \in b \Leftrightarrow x \subseteq a)
\]

(f) **Infinity.** There is an infinite set. One way to express this is to assert the existence of a set which contains the empty set and is closed under the successor operation \(x \mapsto x \cup \{x\}\):
\[
\exists a \in \text{Sets} \ \forall x (\emptyset \in a \land \forall x (x \in a \Rightarrow x \cup \{x\} \in a)
\]

2. (a) **Class extensionality:** Classes containing the same elements are equal.

(b) **Comprehension:** If \(\phi(x, y_1, \ldots, y_m, z_1, \ldots, z_n)\) is a first-order formula in which only set-variables are quantified, and if \(b_1, \ldots, b_m\) are sets, and \(c_1, \ldots, c_n\) are classes, then there exists a class, denoted by
\[
\{x \in \text{Sets} \mid \phi(x, b_1, \ldots, b_m, c_1, \ldots, c_n)\}
\]
containing precisely those sets \(x \) that satisfy \(\phi(x, b_1, \ldots, b_m, c_1, \ldots, c_n) \).

This is in fact an infinite family of axioms (for every first-order formula \(\phi \) we have one axiom).

(c) Replacement: If a class \(c \) is a function, i.e., if for every set \(a \) there is a unique set \(b := c(a) \) such that \((a, b) := \{\{a\}, \{a, b\}\}\) belongs to \(c \), then for every set \(d \) the image \(\{c(z) \mid z \in d\} \) is a set.

(3) Regularity (or Axiom of Foundation):

\[
\forall x \in \text{Sets} \ (x \neq \emptyset \Rightarrow \exists y \in x \ (y \cap x = \emptyset))
\]

Consequently: no set can be an element of itself. Moreover, there is no infinite sequence \((a_n) \) such that \(a_{i+1} \) is an element of \(a_i \) for all \(i \). Most parts of mathematics can be practised without this axiom, but assuming this axiom simplifies some proofs of fundamental properties of ordinals.

(4) For BGC we add Global Choice: There is a function \(c \) such that \(c(a) \in a \) for every nonempty set \(a \).

We mention that BG is a conservative extension of ZF: any set-theoretical statement provable in BG (BGC) is also provable in ZF (ZFC). (The substructure of a model of BG induced by sets is a model of ZF. Conversely, a model \(M \) of ZF becomes a model of BG by taking the first-order definable subsets of \(M \) as classes.)

C.2. Ordinals

A well-ordering of a set \(A \) is a linear order \(< \) on \(A \) such that any non-empty subset of \(A \) contains a smallest element with respect to \(< \). The usual ordering of the set \(\mathbb{N} \) is an example of a well-ordering, and the usual ordering of \(\mathbb{Z} \) and the positive rational numbers are non-examples. For \(a \in A \), the predecessors of \(a \) are the elements \(b \in A \) with \(b < a \).

Definition C.2.1. An ordinal is a well-ordered set in which every element equals its set of predecessors.

The well-ordering of an ordinal \(\alpha \) is given by the relation \(\in \): if \(\beta, \gamma \in \alpha \), then

\[
\beta < \alpha \Leftrightarrow \beta \text{ is a predecessor of } \alpha
\]

\[
\Leftrightarrow \beta \in \alpha
\]

Hence, an ordinal is uniquely given by the set of its elements. Suppose that \(\alpha \) is an ordinal, and \(\gamma \in \beta \in \alpha \). Then \(\gamma \) is a predecessor of \(\beta \), and hence must be in \(\alpha \). That is, ordinals \(\alpha \) are transitive: if \(\beta \in \alpha \) then \(\beta \subseteq \alpha \).

An element \(\beta \) of an ordinal \(\alpha \) is again an ordinal number: Since \(\beta \subseteq \alpha \), we obtain a well-ordering of \(\beta \) by restricting the well-ordering of \(\alpha \) to \(\beta \). Moreover, if \(\gamma, \gamma' \in \beta \), then \(\gamma < \gamma' \) if \(\gamma \in \gamma' \) so \(\beta \) is indeed an ordinal.

Proposition C.2.2. Every structure \((A; <) \) where \(A \) is well-ordered by \(< \) is isomorphic to \((\alpha; \in) \) where \(\alpha \) is an ordinal.

Proof. Define \(f : A \to \alpha \) inductively by \(f(y) := \{f(z) \mid z < y\} \). The image of \(f \) is an ordinal \(\alpha \) such that \((\alpha; \in) \) is isomorphic to \((A; <) \) via \(f \). (Note that \(f \) is the only isomorphism between \((A; <) \) and \((\alpha; \in) \).)

We denote the class of all ordinals by On.

Proposition C.2.3. On is a proper class, i.e., a class which is not a set, and it is well-ordered by \(\in \).
Proof. Let \(\alpha \) and \(\beta \) be different ordinals. We have to show that either \(\alpha \in \beta \) or \(\beta \in \alpha \). If not, then \(x = \alpha \cap \beta \) would be a proper initial segment of \(\alpha \) and \(\beta \), and therefore itself an element of \(\alpha \) and \(\beta \), so \(x \in x \), a contradiction.

The class of all ordinals is not a set (the Burali-Forti Paradox): if it were a set, then it were an ordinal itself, and thus a member of itself, contradicting the Axiom of Foundation.

So every ordinal \(\alpha \) is a set having as elements precisely the smaller ordinals:

\[
\alpha = \{ \beta \in \text{On} \mid \beta < \alpha \}.
\]

In the following, for ordinals \(\alpha, \beta \) we write \(\alpha < \beta \) rather than \(\alpha \in \beta \).

For any ordinal \(\alpha \) its successor is defined as \(\alpha + 1 := \alpha \cup \{ \alpha \} \): it is the smallest ordinal greater than \(\alpha \). Starting from the smallest ordinal \(0 = \emptyset \), its successor is \(1 = \{0\} \), then \(2 = \{0, 1\} \), and so on, yielding the natural numbers \(\mathbb{N} \). When we view \(\mathbb{N} \) as an ordinal, we denote it by \(\omega \). The next ordinal is \(\omega + 1 = \{0, 1, \ldots, \omega\} \), etc. By definition, a successor ordinal \(\beta \) contains a maximal element \(\alpha \) (so \(\beta = \alpha + 1 \)). Ordinals greater than 0 which are not successor ordinals are called limit ordinals. Any ordinal can be written uniquely as

\[
\lambda + 1 + \cdots + 1 \quad \text{n times}
\]

where \(\lambda \) is a limit ordinal.

Theorem C.2.4 (Well-ordering theorem). Every set has a well-ordering.

Proof. Let \(A \) be a set. Fix a set \(B \) which does not belong to \(A \) and define a function \(f \) from the class of all ordinals to \(A \cup \{ B \} \) as follows:

- if \(A \setminus \{ f(\beta) \mid \beta < \alpha \} \neq \emptyset \) then set \(f(\alpha) \) to be an element from this set (here we use the Axiom of Choice).
- Otherwise, \(f(\alpha) := B \).

Then \(\gamma := \{ \alpha \mid f(\alpha) \neq B \} \) is an ordinal and \(f \) defines a bijection between \(\gamma \) and \(A \).

In fact, the well-ordering theorem is equivalent to the Axiom of Choice. Note that the ordinal \(\gamma \) in the construction of the well-ordering of \(A \) is not unique, unless \(A \) is finite.

C.3. Cardinals

Two sets \(A \) and \(B \) have the same cardinality (\(|A| = |B|\)) if there exists a bijection between them. By the well-ordering theorem, every set has the same cardinality as some ordinal. We call the smallest such ordinal the cardinality \(|A|\) of \(A \). Ordinals occurring in this way are called cardinals. An ordinal \(\alpha \) is a cardinal if and only if all smaller ordinals do not have the same cardinality.

Notes.

- All natural numbers and \(\omega \) are cardinals.
- \(\omega + 1 \) is the smallest ordinal that is not a cardinal.
- The cardinality of a finite set is a natural number.
- A set of cardinality \(\omega \) is called countably infinite.
Sums, products, and powers of cardinals are defined as the cardinality of disjoint unions, Cartesian powers, and sets of functions:

\[
\begin{align*}
|x| + |y| & := |x \cup y| \\
|x| \cdot |y| & := |x \times y| \\
|x|^{|y|} & := |x^y|
\end{align*}
\]

where \(x \cap y = \emptyset\)

and likewise for infinite sums and products:

\[
\begin{align*}
\sum_{x \in I} |x| & := |\bigcup_{x \in I} x| \\
\prod_{x \in I} |x| & := |\prod_{x \in I} x|.
\end{align*}
\]

Note that

\[(\kappa^\lambda)\mu = \kappa^{\lambda \cdot \mu}.
\]

Cantor’s well-known diagonalization argument shows that

\[2^\kappa > \kappa.
\]

In particular, there is no largest cardinal. Cantor’s result also follows from König’s theorem below for \(\kappa_i := 1\) and \(\lambda_i := 2\) for all \(i \in I := \omega\).

Theorem C.3.1 (König’s theorem). Let \((\kappa_i)_{i \in I}\) and \((\lambda_i)_{i \in I}\) be sequences of cardinals. If \(\kappa_i < \lambda_i\) for all \(i \in I\), then

\[\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i.
\]

Proof. We first show that \(\sum_{i \in I} \kappa_i \leq \prod_{i \in I} \lambda_i\). Choose pairwise disjoint sets \((A_i)_{i \in I}\) and \((B_i)_{i \in I}\) such that \(|A_i| = \kappa_i\), \(|B_i| = \lambda_i\), and \(A_i \subset B_i\) for all \(i \in I\). We will construct an injection \(f: \bigcup_{i \in I} A_i \to \prod_{i \in I} B_i\). Choose \(d_i \in B_i \setminus A_i\) for each \(i \in I\) (here we use the Axiom of Choice). For \(x \in A := \bigcup_{i \in I} A_i\), define

\[f(x) := (a_i)_{i \in I}\text{ where }a_i := \begin{cases} x & \text{if } x \in A_i \\ d_i & \text{otherwise.} \end{cases}
\]

To show the injectivity of \(f\), let \(x, y \in A\) be distinct. Let \(i \in I\) be such that \(x \in A_i\). If \(y \in A_i\) then \(f(x)i = x \neq y = f(y)i\). If \(y \notin A_i\) then \(f(x)i = x \neq d_i = f(y)i\), since \(x \in A_i\) but \(d_i \notin B_i \setminus A_i\). So in both cases, \(f(x) \neq f(y)\).

Suppose for contradiction that \(\sum_{i \in I} \kappa_i = \prod_{i \in I} \lambda_i\). Then we can find sets \((X_i)_{i \in I}\) with \(|X_i| = \kappa_i\) such that

\[B := \prod_{i \in I} B_i = \bigcup_{i \in I} X_i.
\]

For each \(i \in I\), define

\[Y_i := \{a_i \mid a \in X_i\}.
\]

For every \(i \in I\) there exists \(b_i \in B_i \setminus Y_i\) because \(|Y_i| \leq |X_i| = \kappa_i < \lambda_i = |B_i|\). Now define

\[b := (b_i)_{i \in I} \in \prod_{i \in I} B_i.
\]

Let \(j \in I\). Then \(b_j \notin Y_j\) by the choice of \(b_j\), and hence \(b \notin X_j\) by the definition of \(Y_j\). This shows that \(b \notin \bigcup_{i \in I} X_i\), a contradiction. \(\square\)
We write κ^+ for the smallest cardinal greater than κ, the successor cardinal of κ. Positive cardinals which are not successor cardinals are called limit cardinals. There is an isomorphism between the class of ordinals and the class of all infinite cardinals, which is denoted by

$$\alpha \mapsto \aleph_\alpha$$

and can be defined inductively by

$$\aleph_\alpha := \begin{cases}
 \omega & \text{if } \alpha = 0 \\
 \aleph_\beta^+ & \text{if } \alpha = \beta + 1 \\
 \bigcup_{\beta < \alpha} \aleph_\beta & \text{if } \alpha \text{ is a limit ordinal.}
\end{cases}$$

Note that if $(\kappa_i)_{i \in I}$ is a family of cardinals, then $\kappa := \bigcup_{i \in I} \kappa_i$ is again a cardinal:

- if there is an $i \in I$ such that $\kappa_j \leq \kappa_i$ for all $j \in I$, then $\bigcup_{i \in I} \kappa_i = \kappa$ and the statement is true;
- otherwise, for every $i \in I$ there is a $j \in I$ with $\kappa_i < \kappa_j$. For each ordinal α with $\alpha < \kappa$ we have that $\alpha \in \kappa$ and hence $\alpha \in \kappa_i$ for some $i \in I$. By the above, there is a $j \in I$ such that $|\alpha| \leq \kappa_i < \kappa_j \leq |\kappa|$. Thus, every ordinal smaller than κ has smaller cardinality than κ, and κ is a cardinal.

Theorem C.3.2. Let κ be an infinite cardinal. Then

1. $\kappa \cdot \kappa = \kappa$.
2. $\kappa + \lambda = \max(\kappa, \lambda)$.
3. $\kappa^\kappa = 2^\kappa$.

Proof. For ordinals $\alpha, \beta, \alpha', \beta'$, define $(\alpha, \beta) < (\alpha', \beta')$ iff

$$(\max(\alpha, \beta), \alpha, \beta) <_{\text{lex}} (\max(\alpha', \beta'), \alpha', \beta')$$

where lex is the lexicographical ordering on triples of ordinals. Since this is a well-ordering, there is a unique order-preserving bijection f between pairs of ordinals and ordinals by Proposition C.2.2.

Claim. If κ is an infinite cardinal, then f maps $\kappa \times \kappa$ to κ, and hence $\kappa \cdot \kappa = \kappa$.

The proof of the claim is by induction on κ. For $\alpha, \beta \in \kappa$ let $P_{\alpha, \beta}$ be the set of predecessors of (α, β). Note that:

- $P_{\alpha, \beta}$ is contained in $\delta \times \delta$ with $\delta = \max(\alpha, \beta) + 1$.
- Since κ is infinite and $\alpha, \beta < \kappa$, the cardinality of δ is smaller than κ.
- By inductive assumption $|P_{\alpha, \beta}| \leq |\delta \times \delta| = |\delta| \cdot |\delta| \overset{\text{IA}}{=} |\delta| < \kappa$.

Hence, $f(\alpha, \beta) < \kappa$ since f is an order isomorphism and thus $f(\alpha, \beta) \in \kappa$.

Now (2) and (3) are simple consequences. Let $\mu := \max(\kappa, \lambda)$.

- $\mu \leq \kappa + \lambda \leq \mu + \mu \leq 2 \cdot \mu \leq \mu \cdot \mu = \mu$
- $2^\kappa \leq \kappa^\kappa \leq (2^\kappa)^\kappa = 2^{\kappa^\kappa} = 2^\kappa$

The Continuum Hypothesis (CH) states that $\aleph_1 = 2^{\aleph_0}$, that is: there is no cardinal lying strictly between ω and the cardinality $|\mathbb{R}|$ of the continuum. The Generalised Continuum Hypothesis (GCH) states that $\kappa^+ = 2^\kappa$ for all infinite cardinals κ. As with CH, the GCH is known to be independent of ZFC, that is, there are models of ZFC where GCH is true, and models of ZFC where GCH is false (assuming that ZFC is consistent; see [14]).

Let A be a set that is linearly ordered by \prec. A subset $B \subseteq A$ is called cofinal if for every $a \in A$ there is some $b \in B$ with $a \leq b$. Any linear order contains a well-ordered cofinal subset.
Definition C.3.3. The **cofinality** $\text{cf}(A)$ of A is the smallest ordinal that is order-isomorphic to a well-ordered cofinal subset of A.

Examples:
- If A has a greatest element, then the cofinality is one since the set consisting only of the greatest element is cofinal and must be contained in any other cofinal subset of A.
- $\text{cf}(2^\omega) > \omega$; see Exercise [47](#).

Lemma C.3.4. For linearly ordered A we have $\text{cf}(\text{cf}(A)) = \text{cf}(A)$.

Proof. If $\{a_\alpha \mid \alpha < \beta\}$ is cofinal in A and $\{\alpha(\nu) \mid \nu < \mu\}$ is cofinal in β, then $\{a_{\alpha(\nu)} \mid \nu < \mu\}$ is cofinal in A. □

Lemma C.3.5. For linearly ordered A we have that $\text{cf}(A)$ is a cardinal.

Proof. Suppose for contradiction that $\text{cf}(A)$ is not a cardinal. Choose a surjective map f from $|\text{cf}(A)|$ to $\text{cf}(A)$. This maps provides a cofinal sequence in $\text{cf}(A)$ of length $|\text{cf}(A)|$, and therefore $\text{cf}(\text{cf}(A)) \leq |\text{cf}(A)| < \text{cf}(A)$. This is in contradiction to $\text{cf}(\text{cf}(X)) = \text{cf}(X)$ from Lemma [C.3.4](#).

A cardinal κ is **regular** if $\text{cf}(\kappa) = \kappa$, and **singular** otherwise. As we have seen above, \aleph_0 is an example of a regular cardinal. Lemma [C.3.5](#) and Lemma [C.3.4](#) show that $\text{cf}(A)$ is a regular cardinal. Assuming the axiom of choice, we also have the following.

Proposition C.3.6. Successor cardinals $\aleph_{\alpha+1}$ are regular.

Proof. Suppose for contradiction that $\text{cf}(\aleph_{\alpha+1}) \leq \aleph_\alpha$. Then $\aleph_{\alpha+1}$ would be the union of at most \aleph_α sets of cardinality at most \aleph_α, contradicting item (1) in Theorem [C.3.2](#).

Exercises.

(46) Show that \aleph_ω is singular.

(47) Show that $\text{cf}(2^\omega) > \omega$.

Hint: write 2^ω as $\sum_{\nu < \mu} \kappa_\nu$ for $\mu := \text{cf}(2^\omega)$, and apply König’s theorem (Theorem [C.3.1](#)) with $(\kappa_\nu)_{\nu < \mu}$ and $(\lambda_\nu)_{\nu < \mu}$ where $\lambda_\nu := 2^\omega$ for all $\nu < \mu$. [47]