Parabolic 231-Avoiding Permutations

Let S_n be the symmetric group on $[n] = \{1, 2, \ldots, n\}$, and let $S = \{a_i\}_{i=1}^{n-1}$ be the set of simple reflections $s_i = (i, i+1)$. The Cayley graph of S_n generated by S may be oriented to form the weak order, which is a lattice. Fix $J = S \setminus \{s_j, s_{j+1}, \ldots, s_k\}$, and let $B(J)$ be the set partition of $[n]$ (whose parts we call J-regions)

$$\{1, \ldots, j\}, \{j+1, \ldots, j\}, \ldots, \{j-1, \ldots, j\}, \{j+1, \ldots, n\}.$$

The parabolic quotient \mathfrak{S}_J is the set of $w \in S_n$ whose one-line notation has the form $w = w_1 \cdots < w_{n-1} < w_n$.

Definition 1 A permutation $w \in \mathfrak{S}_J$ is 231-avoiding if there exist no three indices $i < j < k$ of which lie in different J-regions, such that $w_j < w_i < w_k$ and $w_k = w_i = 1$. Let \mathfrak{S}_J^{231} denote the set of J-231-avoiding permutations of \mathfrak{S}_J.

Theorem 2 For $J \subseteq S$, the restriction of the weak order to \mathfrak{S}_J^{231} forms a lattice. Furthermore, \mathfrak{T}_J^{231} is a lattice quotient of the weak order on S_n.

When $J = \emptyset$, we recover the classical Tamari lattice on 231-avoiding permutations.

Parabolic Noncrossing Partitions

Let $P = \{P_1, P_2, \ldots, P_r\}$ be a set partition of $[n]$. A pair (a, b) is a bump of P if $a, b \in P_i$ for some $i \in [s]$ and there is no $c \in P_i$ with $a < c < b$.

Definition 3 A set partition P of $[n]$ is J-noncrossing if it satisfies:

(NC1) If i and j lie in the same J-region, then they are not contained in the same part of P.

(NC2) If two distinct bumps (i_1, i_2) and (j_1, j_2) of P satisfy $i_1 < j_1 < j_2 < i_2$, then either i_1 and j_1 lie in the same J-region or j_1 and i_2 lie in the same J-region.

(NC3) If two distinct bumps (i_1, i_2) and (j_1, j_2) of P satisfy $i_1 < j_1 < j_2 < i_2$, then either i_1 and j_1 lie in different J-regions.

Let NC_J denote the set of all J-noncrossing set partitions of $[n]$.

When $J = \emptyset$, we recover the classical noncrossing set partitions.

Example 4 For $J = \{s_1, s_2, s_3, s_4, s_5\}$, \{\{1\}, \{2, 9\}, \{3, 10\}, \{4\}, \{5\}, \{6, 8\}, \{7\}\} \in NC_J.

Parabolic Nonnesting Partitions

Definition 5 A set partition P of $[n]$ is J-nonnesting if it satisfies:

(NN1) If i and j lie in the same J-region, then they are not in the same part of P.

(NN2) If (i_1, i_2) and (j_1, j_2) are two distinct bumps of P, then it is not the case that $i_1 < j_2 < i_2$.

Let NN_J denote the set of all J-nonnesting partitions of $[n]$.

When $J = \emptyset$, we recover the classical nonnesting set partitions.

Example 6 For $J = \{s_1, s_2, s_3, s_4, s_5\}$, \{\{1\}, \{2\}, \{3\}, \{4, 8\}, \{6, 10\}, \{7\}, \{9\}\} \in NN_J.

Parabolic Catalan Objects are Equinumerous

Although we no longer have a product formula for $|\mathfrak{S}_J^{(231)}|$, our parabolic generalizations remain in bijection, generalizing the situation when $J = \emptyset$.

Theorem 7 For $n > 0$ and $J \subseteq S$, we have $|\mathfrak{S}_J^{(231)}| = |NC_J| = |NN_J|$.

From $\mathfrak{S}_J^{(231)}$ to NC_J

A permutation $w \in \mathfrak{S}_J^{(231)}$ corresponds to the J-noncrossing partition $P \in NC_J$ whose bumps are determined by the descents of w.

Example 8 For $n = 10$ and $J = \{s_1, s_2, s_3, s_4, s_5\}$, $1 \hspace{1mm} 7 \hspace{1mm} 9 \hspace{1mm} 10 \hspace{1mm} | \hspace{1mm} 2 \hspace{1mm} 5 \hspace{1mm} | \hspace{1mm} 3 \hspace{1mm} 1 \hspace{1mm} | \hspace{1mm} 6 \hspace{1mm} 8 \hspace{1mm} \in \mathfrak{S}_J^{(231)}$ gives $\in NC_J.$

From NC_J to NN_J

A J-noncrossing partition P corresponds to the J-nonnesting partition P', in which the minimal elements outside P' are determined by the bumps of P.

Example 9 For $n = 10$ and $J = \{s_1, s_2, s_3, s_4, s_5\}$, we compute

Example: $\mathfrak{S}_J, J = \{s_2\}$

Outlook

We can generalize the definition of J-231-avoidable elements of \mathfrak{S}_J to parabolic quotients of any finite Coxeter group and to any Coxeter element. The definition of parabolic noncrossing and nonnesting partitions—as well as the α-cluster complex—can also be generalized, but—in contrast to the classical case when $J = \emptyset$—the four sets are not always equinumerous.