Day’s Doubling Construction

Let $P = (P, \leq)$ be a poset and let 2 be the chain of length 2 whose elements are 0 and 1. For $I \subseteq P$, define $P_I = \{ x \mid x \leq y \text{ for some } y \in I \}$. The **doubling** of P by I is the subposet $P[I]$ of $P \times 2$ given by the ground set $\{ P_I \times \{ 0 \} \} \cup \{ ((P \setminus P_I) \cup I) \times \{ 1 \} \}$.

The Alternate Order

Let $P = (P, \leq)$ be a congruence-uniform lattice. For $x \in P$, define $x_i = x \wedge y$, and $\Psi(x) = \{ \lambda(x, y) \mid x_i \leq u \wedge v \leq x \}$. The **alternate order** of P is the poset $\text{Alt}(P) = (P, \leq)$ determined by the order relation $x \subseteq y$ if and only if $\Psi(x) \subseteq \Psi(y)$.

Problem 1 (N. Reading, 2016)

For which congruence-uniform lattices is their alternate order again a lattice?

The Motivation

Let A be a simplicial hyperplane arrangement, and fix a base region B. The **poset of regions** $\text{Alt}(A, B)$ is the reflexive and transitive closure of the adjacency graph of the regions of A oriented away from B.

Example

![Example Diagram]

A Necessary Condition

Theorem 5 (N. Reading, 2017)

Let P be a congruence-uniform lattice. If $\text{Alt}(P)$ is a lattice, then P is spherical.

Sketch of proof: use meet-semidistributivity of P and Theorem 3 to show that $\text{Alt}(P)$ has a greatest element if and only if P is spherical.

Another Example

![Another Example Diagram]

A Particular Doubling

Let $P = (P, \leq)$ be a lattice. An element $j \in P \setminus \{ \hat{0}, \hat{1} \}$ is **join-irreducible** if $j = x \vee y$ implies $j \in \{ x, y \}$.

Proposition 6

Every meet-semidistributive lattice P satisfies $\mu_P(\hat{0}, \hat{1}) = -1$. A meet-semidistributive lattice P is **spherical** if $\mu_P(\hat{0}, \hat{1}) \neq 0$.

A Special Hyperplane Arrangement

![A Special Hyperplane Arrangement]

The Crosscut Theorem

Let $P = (P, \leq)$ be a lattice with least element $\hat{0}$ and greatest element $\hat{1}$. An antichain $C \subseteq P \setminus \{ \hat{0}, \hat{1} \}$ is a **crosscut** if every maximal chain of P intersects C.

A crosscut C is **spanning** if $\forall C = \hat{1}$ and $\hat{1} C = \hat{0}$.

Theorem 3 (G.-C. Rota, 1964)

Let $P = (P, \leq)$ be a lattice, and let $C \subseteq P$ be a crosscut. We have $\mu_P(\hat{0}, \hat{1}) = \sum_{X \subseteq C \text{ spanning}} (-1)^{|X|}$.

Shards of Hyperplanes

Let X be an intersection of hyperplanes of A of codimension 2. The regions containing X form a polyhedral complex $P(A, B)$ with a greatest element $\hat{1}$.

The **bounder hyperplanes** of Q that contain X “cut” all the other hyperplanes containing X. All these cuts split the hyperplanes of A into **shards**.

Example

![Shards of Hyperplanes Example Diagram]

The Möbius Function

The **Möbius function** of a poset P is the function μ_P defined recursively by:

$$\mu_P(x, y) = \begin{cases} 1, & \text{if } x = y, \\ -\sum_{z < x \leq y} \mu_P(x, z), & \text{if } x < y, \\ 0, & \text{otherwise}. \end{cases}$$

Spherical Meet-Semidistributive Lattices

Proposition 4

Every meet-semidistributive lattice P satisfies $\mu_P(\hat{0}, \hat{1}) = -1$. A meet-semidistributive lattice P is spherical if $\mu_P(\hat{0}, \hat{1}) \neq 0$.

The Intersection Property

A congruence-uniform lattice $P = (P, \leq)$ has the intersection property if for every $x, y \in P$ there exists some $z \in P$ such that $\Psi(x) \cap \Psi(y) = \Psi(z)$.

Proposition 8

A congruence-uniform lattice $P = (P, \leq)$ has the intersection property if for every $x, y \in P$ there exists some $z \in P$ such that $\Psi(x) \cap \Psi(y) = \Psi(z)$.

Proposition 9

Which congruence-uniform lattices have the intersection property?

Problem 9

Which congruence-uniform lattices have the intersection property?

Problem 10

Find a spherical congruence-uniform lattice P without the intersection property for which $\text{Alt}(P)$ is a lattice.