On the Topology of the Cambrian Semilattices
Myrto Kallipoliti and Henri Mühle
Fakultät für Mathematik, Universität Wien, 1090 Vienna, Austria

Cambrian Semilattices

For an arbitrary Coxeter group \(W \) and an arbitrary Coxeter element \(\gamma \in W \), Reading and Speyer defined the \(\gamma \)-Cambrian semilattice \(C_\gamma \) as a sublattice of the weak order semilattice. Cambrian semilattices constitute generalizations of the Tamari lattice \(T_n \), to which they reduce when \(W \) is the symmetric group \(S_n \) and \(\gamma \) is the long cycle \(\gamma = (1 \, 2 \cdots n) \).

What is known - The Finite Case

If \(W \) is a finite Coxeter group, and \(\gamma \in W \) is a Coxeter element, then \(C_\gamma \) is a lattice. Considering its topological properties it is known that:
- \(C_\gamma \) is Cohen-Macaulay (in fact it is EL-shellable), and
- every open interval of \(C_\gamma \) is either contractible or spherical.

Definitions

Let \(W \) be a Coxeter group of rank \(n \) with simple generators \(s_1, s_2, \ldots, s_n \) and let \(\gamma = s_1 s_2 \cdots s_k \in W \) be a Coxeter element of \(W \). Let \(\gamma^\infty = s_1 s_2 \cdots s_n s_1 s_2 \cdots s_n \cdots \).

Every \(w \in W \) can be written as a subword of \(\gamma^\infty \), in the form
\[
w = s_1^{\delta_{11}} s_2^{\delta_{12}} \cdots s_n^{\delta_{1n}} s_1^{\delta_{21}} s_2^{\delta_{22}} \cdots s_n^{\delta_{2n}} \cdots,
\]
where \(\delta_{ij} \in \{0, 1\} \) and \(k \geq 0 \).

- \(i \)-th block of \(w \): the set \(b_i(w) = \{ s_j \mid \delta_{ij} = 1 \} \)
- \(\gamma \)-sorting word of \(w \): the lexicographically first word of \(\gamma^\infty \) among all reduced words for \(w \)
- \(\gamma \)-sortable element: some \(w \in W \) such that the \(\gamma \)-sorting word of \(w \) satisfies \(b_i(w) \supseteq b_j(w) \supseteq \cdots \supseteq b_k(w) \)
- \(\gamma \)-Cambrian semilattice \(C_\gamma \): the semi-lattice of the weak-order semilattice consisting of all \(\gamma \)-sortable elements

Example - \(\gamma \)-Sorting Words

Let \(W = S_4 \), generated by \(s_i = (i \, i+1) \) for \(i \in \{1, 2, 3\} \), and let \(\gamma = s_1 s_2 s_3 \). The following are reduced words of the same element \(w \in W \):
\[
w_1 = s_1 s_2 s_3 s_1 s_2 s_3, \quad w_2 = s_1 s_2 s_3 s_1 s_2, \quad w_3 = s_1 s_2 s_3 s_2, \quad w_4 = s_1 s_2 s_3 s_2 s_3, \quad w_5 = s_2 s_3 s_1 s_2.
\]
The \(\gamma \)-sorting word of \(w_1 \) is \(w_1' \), and we have \(b_1(w_1) = \{ s_1, s_2, s_3 \} \) and \(b_2(w_1) = \{ s_1, s_2 \} \), with \(b_1(w_1) \supseteq b_2(w_1) \).

Example - \(\gamma \)-Cambrian Semilattices

A classical result on EL-shellable posets states that the dimension of the \(k \)-th homology group of the corresponding truncated order complex is given by the number of falling maximal chains of length \(k + 2 \) (with respect to the EL-labeling).

Using induction on rank and length and the key lemma, we show that there exists at most one falling maximal chain in every closed interval of \(C_\gamma \).