Symmetric Chain Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices

Henri Mühle

LIAFA (Université Paris Diderot)

September 22, 2015

Journées du GT Combinatoire Algébrique du GDR IM
Sperner’s Theorem

\[[n] = \{1, 2, \ldots, n\} \text{ for } n \in \mathbb{N} \]

- **antichain**: set of pairwise incomparable subsets of \([n]\)

Theorem (E. Sperner, 1928)

The maximal size of an antichain of \([n]\) is \(\binom{n}{\lfloor \frac{n}{2} \rfloor}\).
Sperner’s Theorem

- **k-family**: family of subsets of \([n]\) that can be written as a union of at most \(k\) antichains

Theorem (P. Erdős, 1945)

The maximal size of a \(k\)-family of \([n]\) is the sum of the \(k\) largest binomial coefficients.
A Generalization

- **poset perspective:**
 - antichain of \([n]\) \(\longleftrightarrow\) antichain in the Boolean lattice \(B_n\)
 - binomial coefficients \(\longleftrightarrow\) rank numbers of \(B_n\)

- \(\mathcal{P}\) .. graded poset of rank \(n\)
- **\(k\)-Sperner:** size of a \(k\)-family does not exceed sum of \(k\) largest rank numbers
- **strongly Sperner:** \(k\)-Sperner for all \(k \leq n\)
Motivation

Symmetric Chain Decompositions

NCP
Complex Reflection Groups
Noncrossing Partitions

SCD of $\mathcal{NC}_G(d,d,n)$
The Group $G(d,d,n)$
A First Decomposition
A Second Decomposition

SSP of \mathcal{NC}_W

A Generalization

- **poset perspective:**
 - antichain of $[n] \leftrightarrow$ antichain in the Boolean lattice \mathcal{B}_n
 - binomial coefficients \leftrightarrow rank numbers of \mathcal{B}_n

- \mathcal{P} .. graded poset of rank n
- **k-Sperner:** size of a k-family does not exceed sum of k largest rank numbers
- **strongly Sperner:** k-Sperner for all $k \leq n$
Examples

- a strongly Sperner poset
Examples

- a Sperner poset that is not 2-Sperner
Examples

- a Sperner poset that is not 2-Sperner
Examples

- a 2-Sperner poset that is not Sperner
Examples

- a 2-Sperner poset that is not Sperner
Examples

- **strongly Sperner posets:**
 - Boolean lattices
 - divisor lattices
 - lattices of noncrossing set partitions
 - Bruhat posets of finite Coxeter groups
 - weak order lattice of H_3

- **non-Sperner posets:**
 - lattices of set partitions
 - geometric lattices
Examples

- **strongly Sperner posets:**
 - Boolean lattices
 - divisor lattices (symmetric chain decompositions)
 - lattices of noncrossing set partitions
 - Bruhat posets of finite Coxeter groups
 - weak order lattice of H_3

- **non-Sperner posets:**
 - lattices of set partitions
 - geometric lattices
Examples

- **strongly Sperner posets:**
 - Boolean lattices
 - divisor lattices
 - lattices of noncrossing set partitions
 - Bruhat posets of finite Coxeter groups
 - weak order lattice of H_3
 (no symmetric chain decomposition)

- **non-Sperner posets:**
 - lattices of set partitions
 - geometric lattices
Examples

- **strongly Sperner posets:**
 - Boolean lattices
 - divisor lattices (symmetric chain decompositions)
 - lattices of noncrossing set partitions
 - Bruhat posets of finite Coxeter groups
 - weak order lattice of H_3 (no symmetric chain decomposition)

- **non-Sperner posets:**
 - lattices of set partitions (of very large sets...)
 - geometric lattices
Examples

- **strongly Sperner posets:**
 - Boolean lattices
 - divisor lattices (symmetric chain decompositions)
 - lattices of noncrossing set partitions
 - Bruhat posets of finite Coxeter groups
 - weak order lattice of H_3 (no symmetric chain decomposition)

- **non-Sperner posets:**
 - lattices of set partitions (of very large sets...)
 - geometric lattices (certain bond lattices of graphs)
Outline

1. Motivation
2. Symmetric Chain Decompositions
3. Noncrossing Partition Lattices
 - Complex Reflection Groups
 - Noncrossing Partitions
4. Symmetric Chain Decompositions of $\mathcal{NC}_G(d,d,n)$
 - The Group $G(d,d,n)$
 - A First Decomposition
 - A Second Decomposition
5. Strong Sperner Property of \mathcal{NC}_W
Outline

1. Motivation

2. Symmetric Chain Decompositions

3. Noncrossing Partition Lattices
 - Complex Reflection Groups
 - Noncrossing Partitions

4. Symmetric Chain Decompositions of $\mathcal{NC}_{G(d,d,n)}$
 - The Group $G(d,d,n)$
 - A First Decomposition
 - A Second Decomposition

5. Strong Sperner Property of \mathcal{NC}_W
Poset Decompositions

- \(\mathcal{P} \) .. graded poset of rank \(n \)
- **decomposition**: partition of \(\mathcal{P} \) into connected subposets
Motivation

Symmetric Chain Decompositions

NCP

Complex Reflection Groups

Noncrossing Partitions

NC>P

SCD of

\[\mathcal{N} G(d,d,n) \]

The Group \(G(d,d,n) \)

A First Decomposition

A Second Decomposition

SSP of

\[\mathcal{N} \mathcal{W} \]

\(\mathcal{P} \) .. graded poset of rank \(n \)

symmetric decomposition: parts sit in \(\mathcal{P} \) symmetrically, i.e. match minimal and maximal elements so that ranks add up to \(n \)
Motivation
Symmetric Chain Decompositions
NCP
Complex Reflection Groups
Noncrossing Partitions
SCD of \(\mathcal{NC}_{G(d,d,n)} \)
The Group \(G(d,d,n) \)
A First Decomposition
A Second Decomposition
SSP of \(\mathcal{NC}_W \)

- \(\mathcal{P} \) .. graded poset of rank \(n \)
- **symmetric decomposition**: parts sit in \(\mathcal{P} \) symmetrically, i.e. match minimal and maximal elements so that ranks add up to \(n \)
Motivation

Symmetric Chain Decompositions

Noncrossing Partitions

Poset Decompositions

- \mathcal{P} .. graded poset of rank n
- **symmetric decomposition**: parts sit in \mathcal{P} symmetrically, i.e. match minimal and maximal elements so that ranks add up to n
Poset Decompositions

- \(\mathcal{P} \) .. graded poset of rank \(n \)
- **symmetric decomposition**: parts sit in \(\mathcal{P} \) symmetrically, i.e. match minimal and maximal elements so that ranks add up to \(n \)
Poset Decompositions

- \(\mathcal{P} \): graded poset of rank \(n \)
- **symmetric decomposition**: parts sit in \(\mathcal{P} \) symmetrically, i.e. match minimal and maximal elements so that ranks add up to \(n \)

![Diagram showing the poset decomposition](image)
- \mathcal{P} .. graded poset of rank n
- **symmetric chain decomposition**: symmetric decomposition where parts are chains
Symmetric Chain Decompositions

- \mathcal{P} .. graded poset of rank n

Theorem

If \mathcal{P} admits a symmetric chain decomposition, then \mathcal{P} is strongly Sperner.
Symmetric Chain Decompositions

Motivation

Symmetric Chain Decompositions

NCP

Complex Reflection Groups
Noncrossing Partitions

SCD of $\mathcal{N}C_{G(d,d,n)}$
The Group $G(d,d,n)$
A First Decomposition
A Second Decomposition

SSP of $\mathcal{N}C_W$

- \mathcal{P} .. graded poset of rank n

Theorem

If \mathcal{P} and \mathcal{Q} admit a symmetric chain decomposition, then so does $\mathcal{P} \times \mathcal{Q}$.
Symmetric Chain Decompositions

- \mathcal{P} .. graded poset of rank n; N_i .. size of i^{th} rank
- **rank-symmetric**: $N_i = N_{n-i}$
- **rank-unimodal**: $N_0 \leq \cdots \leq N_j \geq \cdots \geq N_n$
- **Peck**: strongly Sperner, rank-symmetric, rank-unimodal

Theorem

If \mathcal{P} admits a symmetric chain decomposition, then \mathcal{P} is Peck.
Symmetric Chain Decompositions

\(\mathcal{P} \) .. graded poset of rank \(n \); \(N_i \) .. size of \(i^{th} \) rank

- **rank-symmetric**: \(N_i = N_{n-i} \)
- **rank-unimodal**: \(N_0 \leq \cdots \leq N_j \geq \cdots \geq N_n \)
- **Peck**: strongly Sperner, rank-symmetric, rank-unimodal

Theorem

If \(\mathcal{P} \) and \(\mathcal{Q} \) are Peck, then so is \(\mathcal{P} \times \mathcal{Q} \).
Outline

1. Motivation
2. Symmetric Chain Decompositions
3. Noncrossing Partition Lattices
 - Complex Reflection Groups
 - Noncrossing Partitions
4. Symmetric Chain Decompositions of $\mathcal{NC}_{G(d,d,n)}$
 - The Group $G(d,d,n)$
 - A First Decomposition
 - A Second Decomposition
5. Strong Sperner Property of \mathcal{NC}_W
Motivation

Symmetric Chain Decompositions

Noncrossing Partition Lattices
 - Complex Reflection Groups
 - Noncrossing Partitions

Symmetric Chain Decompositions of $\mathcal{NC}_{G(d,d,n)}$
 - The Group $G(d,d,n)$
 - A First Decomposition
 - A Second Decomposition

Strong Sperner Property of \mathcal{NC}_W
Complex Reflection Groups

- V .. n-dimensional unitary vector space
- **complex reflection**: unitary transformation of finite order that fixes a hyperplane
- **reflecting hyperplane**: fixed space of a reflection
- **complex reflection group**: finite subgroup of $U(V)$ generated by reflections
- **irreducible**: does not preserve a proper subspace of V
- **rank**: codimension of fixed space
- **well-generated**: irreducible, rank equals minimal number of generators
- **parabolic subgroup**: maximal subgroup that fixes a proper subspace of V
Classification of Irreducible Complex Reflection Groups

- one infinite family $G(de,e,n)$:
 - monomial $(n \times n)$-matrices
 - non-zero entries are $(de)^{th}$ roots of unity
 - product of non-zero entries is d^{th} root of unity
- 34 exceptional groups G_4, G_5, \ldots, G_{37}
Classification of Irreducible Complex Reflection Groups

- one infinite family $G(\text{de},e,n)$:
 - monomial $n \times n$-matrices
 - non-zero entries are $(\text{de})^\text{th}$ roots of unity
 - product of non-zero entries is d^th root of unity

- 34 exceptional groups G_4, G_5, \ldots, G_{37}

- well-generated complex reflection groups:
 - $G(1,1,n), n \geq 1$
 - $G(d,1,n), d \geq 2, n \geq 1$
 - $G(d,d,n), d,n \geq 2$
 - 26 exceptional groups
Classification of Irreducible Complex Reflection Groups

- one infinite family $G(\deg, e, n)$:
 - monomial $(n \times n)$-matrices
 - non-zero entries are $(\deg)^{th}$ roots of unity
 - product of non-zero entries is d^{th} root of unity

- 34 exceptional groups G_4, G_5, \ldots, G_{37}

- finite Coxeter groups:
 - $G(1, 1, n) \cong A_{n-1}$
 - $G(2, 1, n) \cong B_n$
 - $G(2, 2, n) \cong D_n$
 - $G(d, d, 2) \cong I_2(d)$
 - $G_{24} = H_3, G_{28} = F_4, G_{30} = H_4, G_{35} = E_6, G_{36} = E_7, G_{37} = E_8$
A Distinctive Property

- **degrees**: degrees of a homogeneous choice of generators of the invariant algebra
- usually denoted by $d_1 \leq d_2 \leq \cdots \leq d_n$
- **Coxeter number**: largest degree $h = d_n$

Theorem (G. C. Shephard & J. A. Todd, 1954; C. Chevalley, 1955)

A finite group G is a complex reflection group if and only if its algebra of invariant complex polynomials is a polynomial algebra.
A Distinctive Property

- **degrees**: degrees of a homogeneous choice of generators of the invariant algebra
- usually denoted by $d_1 \leq d_2 \leq \cdots \leq d_n$
- **Coxeter number**: largest degree $h = d_n$

Theorem (G. C. Shephard & J. A. Todd, 1954; C. Chevalley, 1955)

A finite group G is a complex reflection group if and only if its algebra of invariant complex polynomials is a polynomial algebra.
Outline

1. Motivation
2. Symmetric Chain Decompositions
3. Noncrossing Partition Lattices
 - Complex Reflection Groups
 - Noncrossing Partitions
4. Symmetric Chain Decompositions of $\mathcal{NC}_{G(d,d,n)}$
 - The Group $G(d,d,n)$
 - A First Decomposition
 - A Second Decomposition
5. Strong Sperner Property of \mathcal{NC}_W
Regular Elements

- **regular vector**: vector that does not lie in a reflecting hyperplane
- **ζ-regular element**: element with eigenvalue ζ so that the corresponding eigenspace contains a regular vector
- **regular number**: multiplicative order of ζ
- **Coxeter element**: ζ-regular element of order h, where ζ is a h^{th} root of unity
Regular Elements

- **regular vector**: vector that does not lie in a reflecting hyperplane
- **ζ-regular element**: element with eigenvalue ζ so that the corresponding eigenspace contains a regular vector
- **regular number**: multiplicative order of ζ
- Coxeter element: ζ-regular element of order h, where ζ is a \(h^{\text{th}} \) root of unity

Theorem (G. Lehrer & T. A. Springer, 1999)

If \(W \) is a well-generated complex reflection group, then \(h \) is a regular number.
regular vector: vector that does not lie in a reflecting hyperplane

ζ-regular element: element with eigenvalue ζ so that the corresponding eigenspace contains a regular vector

regular number: multiplicative order of ζ

Coxeter element: ζ-regular element of order h, where ζ is a h^{th} root of unity

Theorem (G. Lehrer & T. A. Springer, 1999)

If W is a well-generated complex reflection group, then h is a regular number.
Noncrossing Partitions

- \(W \) .. complex reflection group; \(T \) .. reflections of \(W \); \(c \) .. Coxeter element
- **absolute length:** \(\ell_T(w) = \min \{k \mid w = t_1 t_2 \cdots t_k, t_i \in T\} \)
- **absolute order:** \(u \leq_T v \) if and only if
 \[
 \ell_T(v) = \ell_T(u) + \ell_T(u^{-1} v)
 \]
- \(W \)-noncrossing partitions:
 \[
 NC_W(c) = \{w \in W \mid w \leq_T c\}
 \]
- write \(NC_W(c) = (NC_W(c), \leq_T) \)
Noncrossing Partitions

Theorem (V. Reiner, V. Ripoll & C. Stump, 2015)

For any well-generated complex reflection group W, and any two Coxeter elements $c, c' \in W$ we have $\mathcal{NC}_W(c) \cong \mathcal{NC}_W(c')$.

The poset \mathcal{NC}_W is a lattice for any well-generated complex reflection group W.

SCD and SSP for NCP
Henri Mühle

Motivation
Symmetric Chain Decompositions
NCP
Complex Reflection Groups
Noncrossing Partitions

SCD of $\mathcal{NC}_G(d,d,n)$
The Group $G(d,d,n)$
A First Decomposition
A Second Decomposition

SSP of \mathcal{NC}_W
Catalan Numbers

- **W-Catalan number:**

\[\text{Cat}_W = \prod_{i=1}^{n} \frac{d_i + h}{d_i} \]

We have \(|\text{NC}_W| = \text{Cat}_W\) for any well-generated complex reflection group \(W\).
Outline

1. Motivation
2. Symmetric Chain Decompositions
3. Noncrossing Partition Lattices
 - Complex Reflection Groups
 - Noncrossing Partitions
4. Symmetric Chain Decompositions of $\mathcal{NC}_{G(d,d,n)}$
 - The Group $G(d,d,n)$
 - A First Decomposition
 - A Second Decomposition
5. Strong Sperner Property of \mathcal{NC}_W
Symmetric Chain Decompositions of $\mathcal{NC}_G(1,1,n)$

- $W = G(1,1,n) \cong S_n; \ T \ldots \text{transpositions}; \ c = (1 \ 2 \ \ldots \ n)$
- $\mathcal{NC}_G(1,1,n)(c)$ is isomorphic to the lattice of noncrossing set partitions of $[n]$
- $R_k = \{w \in \mathcal{NC}_G(1,1,n)(c) \mid w(1) = k\}, \ R_k = (R_k, \leq_T)$
Symmetric Chain Decompositions of $\mathcal{NC}_G(1,1,n)$

- $W = G(1,1,n) \cong \mathfrak{S}_n$; T ... transpositions; $c = (1 2 \ldots n)$
- $\mathcal{NC}_G(1,1,n)(c)$ is isomorphic to the lattice of noncrossing set partitions of $[n]$
- $R_k = \{ w \in \mathcal{NC}_G(1,1,n)(c) \mid w(1) = k \}$, $R_k = (R_k, \leq_T)$
- \cup ... disjoint set union; 2 ... 2-chain

Lemma (R. Simion & D. Ullmann, 1991)

We have $R_1 \uplus R_2 \cong 2 \times \mathcal{NC}_G(1,1,n-1)$, and $R_i \cong \mathcal{NC}_G(1,1,i-2) \times \mathcal{NC}_G(1,1,n-i+1)$ whenever $3 \leq i \leq n$. Moreover, this decomposition is symmetric.
Symmetric Chain Decompositions of $\mathcal{NC}_G(1,1,n)$

- $W = G(1,1,n) \cong \mathfrak{S}_n$; T. .. transpositions; $c = (1 2 \ldots n)$
- $\mathcal{NC}_G(1,1,n)(c)$ is isomorphic to the lattice of noncrossing set partitions of $[n]$
- $R_k = \{w \in \mathcal{NC}_G(1,1,n)(c) \mid w(1) = k\}$, $R_k = (R_k, \leq_T)$
- \uplus .. disjoint set union; 2 .. 2-chain

Theorem (R. Simion & D. Ullmann, 1991)

The lattice $\mathcal{NC}_G(1,1,n)$ admits a symmetric chain decomposition for each $n \geq 1$.
Example: $\mathcal{NC}_{S_4}((1\ 2\ 3\ 4))$
Example: $\mathcal{NC}_{\mathfrak{S}_4}(1234)$
Example: $\mathcal{NC}_{\mathfrak{S}_4}((1 2 3 4))$
Outline

1. Motivation
2. Symmetric Chain Decompositions
3. Noncrossing Partition Lattices
 - Complex Reflection Groups
 - Noncrossing Partitions
4. Symmetric Chain Decompositions of $\mathcal{NC}_{G(d,d,n)}$
 - The Group $G(d,d,n)$
 - A First Decomposition
 - A Second Decomposition
5. Strong Sperner Property of \mathcal{NC}_W
The Groups $G(d,d,n)$, $d,n \geq 2$

- subgroups of \mathfrak{S}_{dn}, permuting elements of
 \[\{ 1^{(0)}, \ldots, n^{(0)}, 1^{(1)}, \ldots, n^{(1)}, \ldots, 1^{(d-1)}, \ldots, n^{(d-1)} \} \]

- $w \in G(d,d,n)$ satisfies $w(k^{(s)}) = \pi(k)^{(s+t_k)}$
 \[\sum_{k=1}^{n} t_k \equiv 0 \pmod{d} \]
 \[\pi \in \mathfrak{S}_n, \text{ and } t_k \text{ depends on } w \text{ and } k \]
The Groups $G(d,d,n), \, d, n \geq 2$

- elements can be decomposed into “cycles”:

$$\left(\left(\begin{array}{c} k_1^{(t_1)} & \ldots & k_r^{(t_r)} \end{array}\right) \right) = \left(\begin{array}{c} k_1^{(t_1)} & \ldots & k_r^{(t_r)} \end{array}\right) \left(\begin{array}{c} k_1^{(t_1+1)} & \ldots & k_r^{(t_r+1)} \end{array}\right) \cdots \left(\begin{array}{c} k_1^{(t_1+d-1)} & \ldots & k_r^{(t_r+d-1)} \end{array}\right),$$

and

$$\left[k_1^{(t_1)} \ldots k_r^{(t_r)} \right]_s = \left(\begin{array}{c} k_1^{(t_1)} & \ldots & k_r^{(t_r)} & k_1^{(t_1+s)} & \ldots & k_1^{(t_1+(d-1)s)} \end{array}\right) \cdots \left(\begin{array}{c} k_r^{(t_r+s)} & \ldots & k_1^{(t_1(d-1)s)} & \ldots & k_r^{(t_r+(d-1)s)} \end{array}\right).$$
The Lattices $\mathcal{NC}_{G(d,d,n)}, d, n \geq 2$

- **Coxeter element** $c = \left[1^{(0)} \ldots (n-1)^{(0)} \right]_1 \left[n^{(0)} \right]_{d-1}$

- **Matrix representation:**

$$c = \begin{pmatrix}
0 & 0 & 0 & \cdots & 0 & \zeta_d & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & \zeta_d^{d-1}
\end{pmatrix},$$

where $\zeta = e^{2\pi \sqrt{-1}/d}$
The Lattices $\mathcal{NC}_{G(d,d,n)}$, $d, n \geq 2$

Proposition (‡, 2015)

For $d, n \geq 2$, the atoms in $\mathcal{NC}_{G(d,d,n)}(c)$ are of one of the following forms:

- $\left(\left(a^{(0)} b^{(s)}\right)\right)$ for $1 \leq a < b < n$ and $s \in \{0, d - 1\}$, or
- $\left(\left(a^{(0)} n^{(s)}\right)\right)$ for $1 \leq a < n$ and $0 \leq s < d$.
The Lattices $\mathcal{NC}_{G(d,d,n)}$, $d, n \geq 2$

Proposition (.handleChange 2015)

For $d, n \geq 2$, the coatoms in $\mathcal{NC}_{G(d,d,n)}(c)$ are of one of the following forms:

- $\left[1^{(0)} \ldots a^{(0)} (b + 1)^{(0)} \ldots (n - 1)^{(0)} \right]_1 \left[n^{(0)} \right]_{d-1}$
- $\left((a + 1)^{(0)} \ldots b^{(0)}\right)$ for $1 \leq a < b < n$,
- $\left((1^{(0)} \ldots a^{(0)} (b + 1)^{(d-1)} \ldots (n - 1)^{(d-1)})\right)$
- $\left((1^{(0)} \ldots a^{(0)} (b + 1)^{(d-1)} \ldots (n - 1)^{(d-1)})\right)$
- for $1 \leq a < b < n$, or
- $\left((1^{(0)} \ldots a^{(0)} n^{(s-1)} (a + 1)^{(d-1)} \ldots (n - 1)^{(d-1)})\right)$ for $1 \leq a < n$ and $0 \leq s < d$.

Example: $d = 5, n = 3$
Outline

1. Motivation
2. Symmetric Chain Decompositions
3. Noncrossing Partition Lattices
 - Complex Reflection Groups
 - Noncrossing Partitions
4. Symmetric Chain Decompositions of $\mathcal{NC}_{G(d,d,n)}$
 - The Group $G(d,d,n)$
 - A First Decomposition
 - A Second Decomposition
5. Strong Sperner Property of \mathcal{NC}_W
A First Decomposition

\[R_k^{(s)} = \left\{ w \in \mathcal{NC}_{G(d,d,n)}(c) \mid w(1^{(0)}) = k^{(s)} \right\} \]

\[\mathcal{R}_k^{(s)} = \left(R_k^{(s)}, \leq_T \right) \]
A First Decomposition

\[R_k^{(s)} = \{ w \in NC_{G(d,d,n)}(c) | w(1^{(0)}) = k^{(s)} \} \]

\[R_k^{(s)} = (R_k^{(s)}, \leq_T) \]

Lemma (†, 2015)

The sets \(R_1^{(s)} \) and \(R_k^{(s')} \) are empty for \(2 \leq s < d \) as well as \(2 \leq k < n \) and \(1 \leq s' < d - 1 \).
A First Decomposition

$$R_k^{(s)} = \left\{ w \in \mathcal{NC}_{G(d,d,n)}(c) \mid w\left(1^{(0)}\right) = k^{(s)} \right\}$$

$$\mathcal{R}_k^{(s)} = \left(R_k^{(s)}, \leq_T \right)$$

Lemma (endir, 2015)

The poset $\mathcal{R}_1^{(0)} \sqcup \mathcal{R}_2^{(0)}$ is isomorphic to $2 \times \mathcal{NC}_{G(d,d,n-1)}$. Moreover, its least element has length 0, and its greatest element has length n.
A First Decomposition

\[R_k^{(s)} = \left\{ w \in \mathcal{NC}_{G(d,d,n)}(c) \mid w(1^{(0)}) = k^{(s)} \right\} \]

\[\mathcal{R}_k^{(s)} = \left(R_k^{(s)}, \leq_T \right) \]

Lemma (✱, 2015)

The poset \(\mathcal{R}_n^{(s)} \) is isomorphic to \(\mathcal{NC}_{G(1,1,n-1)} \) for \(0 \leq s < d \). Moreover, its least element has length 1, and its greatest element has length \(n - 1 \).
A First Decomposition

\[R_k^{(s)} = \left\{ w \in \mathcal{NC}_{G(d,d,n)}(c) \mid w\left(1^{(0)}\right) = k^{(s)} \right\} \]

\[R_k^{(s)} = \left(R_k^{(s)}, \leq_T \right) \]

Lemma (∉, 2015)

The poset \(R_i^{(0)} \) is isomorphic to \(\mathcal{NC}_{G(d,d,n-i+1)} \times \mathcal{NC}_{G(1,1,i-2)} \) whenever \(3 \leq i < n \). Moreover, its least element has length 1, and its greatest element has length \(n - 1 \).
The poset $\mathcal{R}^{(d-1)}_i$ is isomorphic to $\mathcal{NC}_{G(1,1,n-i)} \times \mathcal{NC}_{G(d,d,i-1)}$ whenever $3 \leq i < n$. Moreover, its least element has length 1, and its greatest element has length $n - 1$.

Lemma (��, 2015)
A First Decomposition

\[R_k^{(s)} = \left\{ w \in \mathcal{N}C_{G(d,d,n)}(c) \mid w(1^{(0)}) = k^{(s)} \right\} \]

\[R_k^{(s)} = \left(R_k^{(s)}, \leq_T \right) \]

Lemma (®, 2015)

The poset \(R_1^{(1)} \) is isomorphic to \(\mathcal{N}C_{G(1,1,n-2)} \). Moreover, its least element has length 2, and its greatest element has length \(n - 1 \).
A First Decomposition

\[R_k^{(s)} = \left\{ w \in \mathcal{NC}_{G(d,d,n)}(c) \mid w(1^{(0)}) = k^{(s)} \right\} \]

\[\mathcal{R}_k^{(s)} = \left(R_k^{(s)}, \leq_T \right) \]

Lemma ())? 2015

The poset \(\mathcal{R}_2^{(d-1)} \) is isomorphic to \(\mathcal{NC}_{G(1,1,n-2)} \). Moreover, its least element has length 1, and its greatest element has length \(n - 2 \).
Example: $d = 5, n = 3$
Example: $d = 5, n = 3$
Outline

1. Motivation
2. Symmetric Chain Decompositions
3. Noncrossing Partition Lattices
 - Complex Reflection Groups
 - Noncrossing Partitions
4. Symmetric Chain Decompositions of $\mathcal{NC}_{G(d,d,n)}$
 - The Group $G(d,d,n)$
 - A First Decomposition
 - A Second Decomposition
5. Strong Sperner Property of \mathcal{NC}_W
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- consider the map

\[f_1 : R_1^{(1)} \to \mathcal{NC}_{G(d,d,n)}(c), \quad x \mapsto \left(\left(\begin{array}{c} 1^0 \\ n^{(d-2)} \end{array} \right) \right) x \]
A Second Decomposition

- bad parts: \(R_1^{(1)} \) and \(R_2^{(d-1)} \)
- consider the map
 \[
 f_1 : R_1^{(1)} \rightarrow R_n^{(d-1)}, \quad x \mapsto \left(\left(\begin{array}{c} 1 \end{array} \right) n^{(d-2)} \right) x
 \]
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- consider the map
 \[f_1 : R_1^{(1)} \to R_n^{(d-1)}, \quad x \mapsto (1(0) \ n^{(d-2)})x \]
- this map is an injective involution
- its image consists of permutations $w \in R_n^{(d-1)}$ with
 \[w(n^{(d-1)}) = 1^{(0)} \]
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- consider the map
 \[f_1 : R_1^{(1)} \to R_n^{(d-1)}, \quad x \mapsto \left(1^{(0)} \cdot n^{(d-2)}\right)x \]
- this map is an injective involution
- its image is the interval
 \[\left[\left(1^{(0)} \cdot n^{(d-1)}\right), \left(1^{(0)} \cdot n^{(d-1)}\right) \left(2^{(0)} \ldots (n-1)^{(0)}\right)\right]_T \]
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- consider the map
 \[f_1 : R_1^{(1)} \rightarrow R_n^{(d-1)}, \quad x \mapsto \left(\binom{1}{0} n^{(d-2)}\right)x \]

Lemma (M, 2015)

The interval \(\left(f_1 \left(R_1^{(1)}\right), \leq_T\right) \) is isomorphic to \(\mathcal{NC}_{G(1,1,n-2)} \).
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- consider the map
 \[f_1 : R_1^{(1)} \to R_n^{(d-1)}, \quad x \mapsto \left(\left(1^0\right) n^{(d-2)}\right)x \]
- define $D_1 = R_1^{(1)} \cup f_1 \left(R_1^{(1)}\right)$, and $D_1 = (D_1, \leq_T)$
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- consider the map
 \[f_1 : R_1^{(1)} \rightarrow R_n^{(d-1)}, \quad x \mapsto \left(\left(1^{(0)}, n^{(d-2)}\right)\right)x \]
- define $D_1 = R_1^{(1)} \cup f_1\left(R_1^{(1)}\right)$, and $D_1 = (D_1, \leq_T)$

Lemma (\cite{Muehle}, 2015)

The poset D_1 is isomorphic to $2 \times \mathcal{NC}_{G(1,1,n-2)}$. Moreover, its least element has length 1, and its greatest element has length $n - 1$.
bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$

consider the map

$$f_2 : R_2^{(d-1)} \rightarrow NC_{G(d,d,n)}(c), \quad x \mapsto \left(\left[\begin{array}{c}2^{(0)} \ n^{(0)}\end{array}\right]\right)x$$
bad parts: \(R_1^{(1)} \) and \(R_2^{(d-1)} \)

consider the map

\[
f_2 : R_2^{(d-1)} \rightarrow R_n^{(d-1)}, \quad x \mapsto \left(\begin{pmatrix} 2^{(0)} & n^{(0)} \end{pmatrix} \right) x
\]
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- consider the map
 $$f_2 : R_2^{(d-1)} \rightarrow R_n^{(d-1)}, \quad x \mapsto \left(\left(2^{(0)} n^{(0)} \right) \right) x$$
- this map is an injective involution
- its image consists of permutations $w \in R_n^{(d-1)}$ with
 $$w \left(n^{(d-1)} \right) = 2^{(d-1)}$$
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- consider the map
 \[f_2 : R_2^{(d-1)} \rightarrow R_n^{(d-1)}, \quad x \mapsto \left(\begin{array}{c} 2^{(0)} \\ n^{(0)} \end{array}\right)x \]
- this map is an injective involution
- its image is the interval
 \[
 \left[\left(\begin{array}{c} 1^{(0)} \\ n^{(d-1)} \\ 2^{(d-1)} \end{array}\right), \left(\begin{array}{c} 1^{(0)} \\ n^{(d-1)} \\ 2^{(d-1)} \\ \ldots \hspace{1cm} (n-1)^{(d-1)} \end{array}\right) \right]_T
 \]
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- consider the map

$$f_2 : R_2^{(d-1)} \rightarrow R_n^{(d-1)}, \quad x \mapsto \left(\begin{pmatrix} 2^{(0)} & n^{(0)} \end{pmatrix} \right) x$$

Lemma (!, 2015)

The interval $\left(f_2 \left(R_2^{(d-1)} \right), \leq_T \right)$ is isomorphic to $\mathcal{NC}_G(1,1,n-2)$.
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- consider the map
 \[f_2 : R_2^{(d-1)} \to R_n^{(d-1)}, \quad x \mapsto \left(\left(2^{(0)}, n^{(0)}\right)\right)x \]
- define $D_2 = R_2^{(d-1)} \uplus f_2\left(R_2^{(d-1)}\right)$, and $\mathcal{D}_2 = (D_2, \leq_T)$
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- consider the map
 $f_2 : R_2^{(d-1)} \to R_n^{(d-1)}, \quad x \mapsto \left(\left(\binom{2}{0} \binom{n}{0} \right) x \right)$
- define $D_2 = R_2^{(d-1)} \biguplus f_2 \left(R_2^{(d-1)} \right)$, and $D_2 = (D_2, \leq_T)$

Lemma (Mühle, 2015)

The poset D_2 is isomorphic to $2 \times NC_{G(1,1,n-2)}$. Moreover, its least element has length 1, and its greatest element has length $n - 1$.
A Second Decomposition

- bad parts: $R_1^{(1)}$ and $R_2^{(d-1)}$
- define $D = R_n^{(d-1)} \setminus \left(f_1\left(R_1^{(1)} \right) \cup f_2\left(R_2^{(d-1)} \right) \right)$, and $\mathcal{D} = (D, \leq_T)$

Lemma (lâ, 2015)

The poset \mathcal{D} is isomorphic to $\bigcup_{i=3}^{n-1} \mathcal{NC}_G(1,1,i-2) \times \mathcal{NC}_G(1,1,n-i)$. Moreover, its minimal elements have length 2, and its maximal elements have length $n - 2$.
The Main Result

Theorem (*, 2015)

For \(d, n \geq 2 \) the lattice \(\mathcal{NC}_{G(d,d,n)} \) admits a symmetric chain decomposition. Consequently, it is Peck.
Example: \(d = 5, n = 3 \)
Example: $d = 5, n = 3$
Motivation

Symmetric Chain Decompositions

Noncrossing Partition Lattices
 - Complex Reflection Groups
 - Noncrossing Partitions

Symmetric Chain Decompositions of $\mathcal{NC}_G(d,d,n)$
 - The Group $G(d,d,n)$
 - A First Decomposition
 - A Second Decomposition

Strong Sperner Property of \mathcal{NC}_W
The Remaining Cases

- so far: $\mathcal{NC}_G(1,1,n)$ and $\mathcal{NC}_G(d,d,n)$ admit symmetric chain decompositions
- what about the other well-generated complex reflection groups?
The Remaining Cases

- so far: $\mathcal{NC}_{G(1,1,n)}$ and $\mathcal{NC}_{G(d,d,n)}$ admit symmetric chain decompositions
- what about the other well-generated complex reflection groups?

Theorem (V. Reiner, 1997)

The lattice $\mathcal{NC}_{G(2,1,n)}$ admits a symmetric chain decomposition for any $n \geq 1$.
The Remaining Cases

- so far: $\mathcal{NC}_{G(1,1,n)}$ and $\mathcal{NC}_{G(d,d,n)}$ admit symmetric chain decompositions
- what about the other well-generated complex reflection groups?
- we have $\mathcal{NC}_{G(2,1,n)} \cong \mathcal{NC}_{G(d,1,n)}$ for $d \geq 2$ and $n \geq 1$

Theorem (V. Reiner, 1997)

The lattice $\mathcal{NC}_{G(2,1,n)}$ admits a symmetric chain decomposition for any $n \geq 1$.
The Remaining Cases

- so far: $\mathcal{NC}_G(1,1,n)$ and $\mathcal{NC}_G(d,d,n)$ admit symmetric chain decompositions
- what about the other well-generated complex reflection groups?
- we have $\mathcal{NC}_G(2,1,n) \cong \mathcal{NC}_G(d,1,n)$ for $d \geq 2$ and $n \geq 1$
- only the 26 exceptional groups remain

Theorem (V. Reiner, 1997)

The lattice $\mathcal{NC}_G(2,1,n)$ admits a symmetric chain decomposition for any $n \geq 1$.
A Decomposition Argument

- \mathcal{P} .. graded poset of rank n
- $\mathcal{P}[i]$.. subposet of \mathcal{P} with i largest ranks removed
A Decomposition Argument

- \mathcal{P} .. graded poset of rank n
- $\mathcal{P}[i]$.. subposet of \mathcal{P} with i largest ranks removed
A Decomposition Argument

- \mathcal{P} .. graded poset of rank n
- $\mathcal{P}[i]$.. subposet of \mathcal{P} with i largest ranks removed
A Decomposition Argument

- \mathcal{P} .. graded poset of rank n
- $\mathcal{P}[i]$.. subposet of \mathcal{P} with i largest ranks removed

\[\mathcal{P}[1] \]
A Decomposition Argument

- \mathcal{P} .. graded poset of rank n
- $\mathcal{P}[i]$.. subposet of \mathcal{P} with i largest ranks removed

Diagram of $\mathcal{P}[1]$: A hexagon with directed edges connecting the vertices.
A Decomposition Argument

- \(\mathcal{P} \) .. graded poset of rank \(n \)
- \(\mathcal{P}[i] \) .. subposet of \(\mathcal{P} \) with \(i \) largest ranks removed
A Decomposition Argument

- \mathcal{P} .. graded poset of rank n
- $\mathcal{P}[i]$.. subposet of \mathcal{P} with i largest ranks removed
A Decomposition Argument

- \mathcal{P} .. graded poset of rank n
- $\mathcal{P}[i]$.. subposet of \mathcal{P} with i largest ranks removed

$\mathcal{P}[3]$
Motivation
Symmetric Chain Decompositions
NCP
Complex Reflection Groups
Noncrossing Partitions

SCD of $\mathcal{NC}_G(d,d,n)$
The Group $G(d,d,n)$
A First Decomposition
A Second Decomposition

SSP of \mathcal{NC}_W

A Decomposition Argument

- \mathcal{P} .. graded poset of rank n
- $\mathcal{P}[i]$.. subposet of \mathcal{P} with i largest ranks removed

$\mathcal{P}[3]$
A Decomposition Argument

- \mathcal{P} .. graded poset of rank n
- $\mathcal{P}[i]$.. subposet of \mathcal{P} with i largest ranks removed

$\mathcal{P}[4]$
A Decomposition Argument

- \mathcal{P} .. graded poset of rank n
- $\mathcal{P}[i]$.. subposet of \mathcal{P} with i largest ranks removed

Proposition (ซะ, 2015)

A graded poset \mathcal{P} of rank n is strongly Sperner if and only if $\mathcal{P}[i]$ is Sperner for all $i \in \{0, 1, \ldots, n\}$.

- antichains in $\mathcal{P}[i]$ are antichains in $\mathcal{P}[s]$ for $s < i$
A Decomposition Argument

- \mathcal{P} .. graded poset of rank n
- $\mathcal{P}[i]$.. subposet of \mathcal{P} with i largest ranks removed

Proposition (חש, 2015)

A graded poset \mathcal{P} of rank n is strongly Sperner if and only if $\mathcal{P}[i]$ is Sperner for all $i \in \{0, 1, \ldots, n\}$.

- antichains in $\mathcal{P}[i]$ are antichains in $\mathcal{P}[s]$ for $s < i$
A Decomposition Argument

- SAGE has a fast implementation to compute the size of the largest antichain of a poset
A Decomposition Argument

- **SAGE** has a fast implementation to compute the *width* of a poset
A Decomposition Argument

- **SAGE** has a fast implementation to compute the **width** of a poset

Theorem (_mpi, 2015)

*The lattice \mathcal{NC}_W is Peck for any well-generated exceptional complex reflection group W.***
A Decomposition Argument

- **SAGE** has a fast implementation to compute the **width** of a poset

Theorem (†, 2015)

The lattice \mathcal{NC}_W is Peck for any well-generated complex reflection group group W.

m-Divisible Noncrossing Partition Posets

- W.. well-generated complex reflection group; c.. Coxeter element of W
- m-divisible noncrossing partition: m-multichain of noncrossing partitions

$$(w)_m = (w_1, w_2, \ldots, w_m) \text{ with } w_1 \leq_T w_2 \leq_T \cdots \leq_T w_m \leq_T c$$
m-Divisible Noncrossing Partition Posets

- \(W\) .. well-generated complex reflection group; \(c\) .. Coxeter element of \(W\)
- \textbf{\(m\)-divisible noncrossing partition}: \(m\)-multichain of noncrossing partitions \(\sim \text{NC}_W^{(m)}(c)\)
- \textbf{\(m\)-delta sequence}: sequence of “differences” of elements in a multichain

\[(w)_m = (w_1, w_2, \ldots, w_m) \text{ with } w_1 \leq_T w_2 \leq_T \cdots \leq_T w_m \leq_T c \]
\[\partial(w)_m = [w_1; w_1^{-1}w_2, w_2^{-1}w_3, \ldots, w_{m-1}^{-1}w_m, w_m^{-1}c] \]
m-Divisible Noncrossing Partition Posets

- \(W \): well-generated complex reflection group; \(c \): Coxeter element of \(W \)
- **\(m \)-divisible noncrossing partition**: \(m \)-multichain of noncrossing partitions
- **\(m \)-delta sequence**: sequence of “differences” of elements in a multichain
- partial order: \((u)_m \leq (v)_m \) if and only if \(\partial(u)_m \leq_T \partial(v)_m \)

Question (D. Armstrong, 2009)

Are the posets \(\mathcal{NC}_W^{(m)} \) strongly Sperner for any \(W \) and any \(m \geq 1 \)?
Motivation
Symmetric Chain Decompositions
NCP
Complex Reflection Groups
Noncrossing Partitions

SCD of $\mathcal{NC}_G(d,d,n)$

$\mathcal{NC}_G(d,d,n)$

A First Decomposition
A Second Decomposition

SSP of \mathcal{NC}_W

m-Divisible Noncrossing Partition Posets

- affirmative answer for $m = 1$

Question (D. Armstrong, 2009)

Are the posets $\mathcal{NC}_W^{(m)}$ strongly Sperner for any W and any $m \geq 1$?

m-Divisible Noncrossing Partition Posets

- affirmative answer for $m = 1$
- what about $m > 1$?
 - $\mathcal{NC}_W^{(m)}$ is antiisomorphic to an order ideal in $(\mathcal{NC}_W)^m$
 - $(\mathcal{NC}_W)^m$ is Peck
 - $\mathcal{NC}_W^{(m)}$ is not rank-symmetric \leadsto no symmetric chain decomposition

Question (D. Armstrong, 2009)

Are the posets $\mathcal{NC}_W^{(m)}$ strongly Sperner for any W and any $m \geq 1$?
Example: $\mathcal{NC}_{\mathfrak{S}_4}^{(2)}$
Example: $\mathcal{NC}_G^{(2)}$
Thank You.
Interlude: A Convolution Formula

\[\mathcal{N}_G^{(d,d,n)}(c) = R_1^{(0)} \uplus R_1^{(1)} \uplus \biguplus_{i=2}^{n-1} \left(R_i^{(0)} \uplus R_i^{(d-1)} \right) \uplus \biguplus_{s=0}^{d-1} R_n^{(s)} \]
Proposition (𝘍, 2015)

For $n \geq 0$ we have

$$\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n+1}{n-1}.$$

$$\mathcal{NC}_{G(d,d,n)}(c) = R_1^{(0)} \uplus R_1^{(1)} \uplus \bigcup_{i=2}^{n-1} \left(R_i^{(0)} \uplus R_i^{(d-1)} \right) \uplus \bigcup_{s=0}^{d-1} R_n^{(s)}.$$
Proposition (ListBox, 2015)

For $n \geq 0$ we have \[
\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n + 1}{n - 1}.
\]

\[
\text{Cat}_{G(d,d,n+2)} = 2 \cdot \text{Cat}_{G(d,d,n+1)} + 2 \cdot \text{Cat}_{G(1,1,n)} + d \cdot \text{Cat}_{G(1,1,n+1)}
+ 2 \sum_{i=3}^{n+1} \text{Cat}_{G(d,d,n-i+3)} \text{Cat}_{G(1,1,i-2)}
\]
Proposition (❄, 2015)

For $n \geq 0$ we have

$$\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n+1}{n-1}.$$
Proposition (_RDONLY, 2015)

For \(n \geq 0 \) we have

\[
\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n+1}{n-1}.
\]

\[
\text{Cat}_{G(d,d,n+2)} = d \cdot \text{Cat}_{G(1,1,n+1)}
\]

\[
+ 2 \cdot \sum_{i=0}^{n} \text{Cat}_{G(d,d,n-i+1)} \cdot \text{Cat}_{G(1,1,i)}
\]
Proposition (**, 2015)

For $n \geq 0$ we have

$$\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n + 1}{n - 1}.$$

$$\text{Cat}_{G(d,d,n+2)} = d \cdot \text{Cat}_{G(1,1,n+1)}$$

$$+ 2 \cdot \sum_{i=0}^{n} \text{Cat}_{G(d,d,i+1)} \cdot \text{Cat}_{G(1,1,n-i)}$$
Proposition (Moon, 2015)

For \(n \geq 0 \) we have

\[
\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n + 1}{n-1}.
\]

\[
\text{Cat}_{G(d,d,n+2)} = d \cdot \text{Cat}_{G(1,1,n+1)} + 2 \cdot \sum_{i=0}^{n} \text{Cat}_{G(d,d,i+1)} \cdot \text{Cat}_{G(1,1,n-i)}
\]

\[
\text{Cat}_{G(d,d,n+2)} = \left(\prod_{i=1}^{n+1} \frac{di + (n - 1)d}{di} \right) \frac{n + (n - 1)d}{n}
\]
Proposition (∗, 2015)

For $n \geq 0$ we have

$$\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n+1}{n-1}.$$

\[
\text{Cat}_{G(d,d,n+2)} = d \cdot \text{Cat}_{G(1,1,n+1)} \\
+ 2 \cdot \sum_{i=0}^{n} \text{Cat}_{G(d,d,i+1)} \cdot \text{Cat}_{G(1,1,n-i)} \\
\text{Cat}_{G(d,d,n+2)} = \left((n+1)d + n + 2 \right) \cdot \text{Cat}_{G(1,1,n+1)}
\]
Interlude: A Convolution Formula

Proposition (†, 2015)

For $n \geq 0$ we have

$$\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n + 1}{n - 1}.$$

\[
\text{Cat}_{G(d,d,n+2)} = d \cdot \text{Cat}_{G(1,1,n+1)} \\
+ 2 \cdot \sum_{i=0}^{n} \text{Cat}_{G(d,d,i+1)} \cdot \text{Cat}_{G(1,1,n-i)}
\]

\[
\text{Cat}_{G(d,d,n+2)} = d \cdot \text{Cat}_{G(1,1,n+1)} \\
+ \left(nd + n + 2 \right) \cdot \text{Cat}_{G(1,1,n+1)}
\]
Proposition (§, 2015)

For $n \geq 0$ we have
$$\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n + 1}{n - 1}.$$
Proposition (араметр, 2015)

For $n \geq 0$ we have

$$\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n + 1}{n - 1}.$$

$$nd \cdot \text{Cat}_{G(1,1,n+1)} + \binom{2(n + 1)}{n + 1} =$$

$$2 \cdot \sum_{i=0}^{n} \left(id \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} \right) + 2 \cdot \sum_{i=0}^{n} \binom{2i}{i} \cdot \text{Cat}_{G(1,1,n-i)}$$
Proposition (❄, 2015)

For $n \geq 0$ we have

$$\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n+1}{n-1}.$$

$$nd \cdot \text{Cat}_{G(1,1,n+1)} + \binom{2(n+1)}{n+1} =$$

$$2d \cdot \sum_{i=0}^{n} \left(i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} \right) + \binom{2(n+1)}{n+1}.$$
Interlude: A Convolution Formula

Proposition (®, 2015)

For $n \geq 0$ we have
\[
\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n+1}{n-1}.
\]

\[
\frac{n}{2} \cdot \text{Cat}_{G(1,1,n+1)} = \sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)}
\]
Proposition (📸, 2015)

For \(n \geq 0 \) we have

\[
\sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)} = \binom{2n + 1}{n - 1}.
\]

\[
\binom{2n + 1}{n - 1} = \sum_{i=0}^{n} i \cdot \text{Cat}_{G(1,1,i)} \cdot \text{Cat}_{G(1,1,n-i)}
\]
Proposition (Y. Kong, 2000)

For \(n \geq 0 \) we have

\[
\sum_{i=0}^{n-1} \text{Cat}_{G(1,1,i)} \cdot \binom{2(n-i)}{n-i-1} = \binom{2n+1}{n-1}.
\]