On the EL-Shellability of the Cambrian Lattices

Myrto Kallipoliti and Henri Mühle

September 10, 2012
Motivation

- it is well-known that the Hasse diagram of the Tamari lattice corresponds to the 1-skeleton of the classical associahedron
- the Tamari lattice T_n can be realized as a lattice quotient of the weak order lattice of the Coxeter group A_n
- the bottom elements of each congruence class are precisely the 312-avoiding permutations
- Nathan Reading has generalized this construction to all finite Coxeter groups W and all Coxeter elements $\gamma \in W$
- he called the resulting lattices *Cambrian lattices*, denoted by C_γ
- this construction yields a generalized associahedron for all finite Coxeter groups
Motivation

• Björner and Wachs showed that T_n is EL-shellable and that each open interval of T_n is either contractible or spherical

• it follows from a result by Nathan Reading that the open intervals of C_γ are either contractible or spherical
Motivation

• Björner and Wachs showed that T_n is EL-shellable and that each open interval of T_n is either contractible or spherical
 • it follows from a result by Hugh Thomas and Colin Ingalls that C_γ is EL-shellable
 • it follows from a result by Nathan Reading that the open intervals of C_γ are either contractible or spherical
Motivation

- Björner and Wachs showed that T_n is EL-shellable and that each open interval of T_n is either contractible or spherical
 - it follows from a result by Hugh Thomas and Colin Ingalls that C_γ is EL-shellable
 - it follows from a result by Nathan Reading that the open intervals of C_γ are either contractible or spherical
- however,
 - Thomas and Ingalls utilize the representation theory of Coxeter groups
 - Reading utilizes the fact that C_γ is the fan lattice of the Coxeter arrangement
Motivation

- Björner and Wachs showed that \mathcal{T}_n is EL-shellable and that each open interval of \mathcal{T}_n is either contractible or spherical
 - it follows from a result by Hugh Thomas and Colin Ingalls that C_γ is EL-shellable
 - it follows from a result by Nathan Reading that the open intervals of C_γ are either contractible or spherical

- however,
 - Thomas and Ingalls utilize the representation theory of Coxeter groups
 - Reading utilizes the fact that C_γ is the fan lattice of the Coxeter arrangement

- we give a direct, case-free proof of these properties, using the realization of C_γ in terms of γ-sortable elements
Outline

1 Preliminaries
 Cambrian Lattices
 EL-Shellability of Posets

2 EL-Shellability of C_γ
 The Labeling
 Main Result

3 Applications
 Topology of C_γ
 Subword Complexes
Outline

1 Preliminaries
 Cambrian Lattices
 EL-Shellability of Posets

2 EL-Shellability of C_γ
 The Labeling
 Main Result

3 Applications
 Topology of C_γ
 Subword Complexes
\(\gamma\)-Sorting Words

- Let \(W\) be a finite Coxeter group of rank \(n\), with simple generators \(S = \{s_1, s_2, \ldots, s_n\}\)
- Consider the Coxeter element \(\gamma = s_1 s_2 \cdots s_n\) and the half-infinite word \(\gamma^\infty = s_1 s_2 \cdots s_n|s_1 s_2 \cdots s_n|s_1 \cdots\)
- \(\gamma\)-sorting word of \(w\): the reduced decomposition of \(w \in W\) which is lexicographically first as a subword of \(\gamma^\infty\) among all reduced decompositions of \(w\)
\(\gamma \)-Sorting Words – Example

- Let \(W = A_4 \) with \(s_i = (i, i + 1) \), and \(\gamma = s_1 s_2 s_3 s_4 \)
- Consider \(w = s_1 s_4 s_3 s_4 \)
- There are eight reduced decompositions of \(w \), namely
 \[
 s_1 s_4 s_3 s_4, \quad s_4 s_1 s_3 s_4, \quad s_4 s_3 s_1 s_4, \quad s_4 s_3 s_4 s_1, \\
 s_1 s_3 s_4 s_3, \quad s_3 s_1 s_4 s_3, \quad s_3 s_4 s_1 s_3, \quad s_3 s_4 s_3 s_1
 \]
- The decomposition \(s_1 s_3 s_4 s_3 \) is the lexicographically first subword of \(\gamma^\infty \) among these words, and thus the \(\gamma \)-sorting word of \(w \)
\(\gamma \)-Sorting Words – Example

- let \(W = A_4 \) with \(s_i = (i, i + 1) \), and \(\gamma = s_1 s_2 s_3 s_4 \)
- consider \(w = s_1 s_4 s_3 s_4 \)
- there are eight reduced decompositions of \(w \), namely
 \[s_1 s_4 s_3 s_4, \quad s_4 s_1 s_3 s_4, \quad s_4 s_3 s_1 s_4, \quad s_4 s_3 s_4 s_1, \]
 \[s_1 s_3 s_4 s_3, \quad s_3 s_1 s_4 s_3, \quad s_3 s_4 s_1 s_3, \quad s_3 s_4 s_3 s_1 \]
- the decomposition \(s_1 s_3 s_4 s_3 \) is the lexicographically first subword of \(\gamma^\infty \) among these words, and thus the \(\gamma \)-sorting word of \(w \)

\[S_1 S_2 S_3 S_4 \mid S_1 S_2 S_3 S_4 \mid S_1 S_2 S_3 S_4 \]
\(\gamma\)-Sorting Words – Example

- let \(W = A_4 \) with \(s_i = (i, i + 1) \), and \(\gamma = s_1s_2s_3s_4 \)
- consider \(w = s_1s_4s_3s_4 \)
- there are eight reduced decompositions of \(w \), namely
 \[s_1s_4s_3s_4, \quad s_4s_1s_3s_4, \quad s_4s_3s_1s_4, \quad s_4s_3s_4s_1, \]
 \[s_1s_3s_4s_3, \quad s_3s_1s_4s_3, \quad s_3s_4s_1s_3, \quad s_3s_4s_3s_1 \]
- the decomposition \(s_1s_3s_4s_3 \) is the lexicographically first subword of \(\gamma^\infty \) among these words, and thus the \(\gamma \)-sorting word of \(w \)

\[s_1s_2s_3s_4|s_1s_2s_3s_4|s_1s_2s_3s_4 \]
\(\gamma\text{-Sorting Words – Example}\)

- let \(W = A_4\) with \(s_i = (i, i + 1)\), and \(\gamma = s_1s_2s_3s_4\)
- consider \(w = s_1s_4s_3s_4\)
- there are eight reduced decompositions of \(w\), namely
 \[s_1s_4s_3s_4, \quad s_4s_1s_3s_4, \quad s_4s_3s_1s_4, \quad s_4s_3s_4s_1, \]
 \[s_1s_3s_4s_3, \quad s_3s_1s_4s_3, \quad s_3s_4s_1s_3, \quad s_3s_4s_3s_1\]
- the decomposition \(s_1s_3s_4s_3\) is the lexicographically first subword of \(\gamma^\infty\) among these words, and thus the \(\gamma\text{-sorting word of } w\)

\[s_1s_2s_3s_4 | s_1s_2s_3s_4 | s_1s_2s_3s_4\]
Let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1s_2s_3s_4$.

Consider $w = s_1s_4s_3s_4$.

There are eight reduced decompositions of w, namely:

$s_1s_4s_3s_4$, $s_4s_1s_3s_4$, $s_4s_3s_1s_4$, $s_4s_3s_4s_1$,

$s_1s_3s_4s_3$, $s_3s_1s_4s_3$, $s_3s_4s_1s_3$, $s_3s_4s_3s_1$.

The decomposition $s_1s_3s_4s_3$ is the lexicographically first subword of γ^∞ among these words, and thus the γ-sorting word of w:

$\underline{s_1s_2s_3s_4 | s_1s_2s_3s_4 | s_1s_2s_3s_4}$
\textbf{γ-Sorting Words – Example}

- let $W = A_4$ with $s_i = (i, i+1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

 $s_1 s_4 s_3 s_4$, $s_4 s_1 s_3 s_4$, $s_4 s_3 s_1 s_4$, $s_4 s_3 s_4 s_1$,
 $s_1 s_3 s_4 s_3$, $s_3 s_1 s_4 s_3$, $s_3 s_4 s_1 s_3$, $s_3 s_4 s_3 s_1$

- the decomposition $s_1 s_3 s_4 s_3$ is the lexicographically first subword of γ^∞ among these words, and thus the γ-sorting word of w

\[s_1 s_2 s_3 s_4 | s_1 s_2 s_3 s_4 | s_1 s_2 s_3 s_4 \]
\(\gamma\)-Sorting Words – Example

- let \(W = A_4\) with \(s_i = (i, i + 1)\), and \(\gamma = s_1s_2s_3s_4\)
- consider \(w = s_1s_4s_3s_4\)
- there are eight reduced decompositions of \(w\), namely
 \[s_1s_4s_3s_4, \quad s_4s_1s_3s_4, \quad s_4s_3s_1s_4, \quad s_4s_3s_4s_1,\]
 \[s_1s_3s_4s_3, \quad s_3s_1s_4s_3, \quad s_3s_4s_1s_3, \quad s_3s_4s_3s_1\]
- the decomposition \(s_1s_3s_4s_3\) is the lexicographically first subword of \(\gamma^{\infty}\) among these words, and thus the \(\gamma\)-sorting word of \(w\)

\[s_1s_2s_3s_4 | s_1s_2s_3s_4 | s_1s_2s_3s_4\]
\(\gamma\)-Sorting Words – Example

- let \(W = A_4\) with \(s_i = (i, i + 1)\), and \(\gamma = s_1s_2s_3s_4\)
- consider \(w = s_1s_4s_3s_4\)
- there are eight reduced decompositions of \(w\), namely
 \[
 s_1s_4s_3s_4,\quad s_4s_1s_3s_4,\quad s_4s_3s_1s_4,\quad s_4s_3s_4s_1,\quad s_1s_3s_4s_3,\quad s_3s_1s_4s_3,\quad s_3s_4s_1s_3,\quad s_3s_4s_3s_1
 \]
- the decomposition \(s_1s_3s_4s_3\) is the lexicographically first subword of \(\gamma^\infty\) among these words, and thus the \(\gamma\)-sorting word of \(w\)

\[
 s_1s_2s_3s_4\,|\,s_1s_2s_3s_4\,|\,s_1s_2s_3s_4

\]
\(\gamma\)-Sorting Words – Example

- let \(W = A_4\) with \(s_i = (i, i+1)\), and \(\gamma = s_1 s_2 s_3 s_4\)
- consider \(w = s_1 s_4 s_3 s_4\)
- there are eight reduced decompositions of \(w\), namely
 \[
 s_1 s_4 s_3 s_4, \quad s_4 s_1 s_3 s_4, \quad s_4 s_3 s_1 s_4, \quad s_4 s_3 s_4 s_1,
 \]
 \[
 s_1 s_3 s_4 s_3, \quad s_3 s_1 s_4 s_3, \quad s_3 s_4 s_1 s_3, \quad s_3 s_4 s_3 s_1
 \]
- the decomposition \(s_1 s_3 s_4 s_3\) is the lexicographically first subword of \(\gamma^\infty\) among these words, and thus the \(\gamma\)-sorting word of \(w\)

\[
S_1 S_2 S_3 S_4 | S_1 S_2 S_3 S_4 | S_1 S_2 S_3 S_4
\]
\(\gamma\)-Sorting Words – Example

- let \(W = A_4\) with \(s_i = (i, i + 1)\), and \(\gamma = s_1 s_2 s_3 s_4\)
- consider \(w = s_1 s_4 s_3 s_4\)
- there are eight reduced decompositions of \(w\), namely
 \[
 s_1 s_4 s_3 s_4, \quad s_4 s_1 s_3 s_4, \quad s_4 s_3 s_1 s_4, \quad s_4 s_3 s_4 s_1, \\
 s_1 s_3 s_4 s_3, \quad s_3 s_1 s_4 s_3, \quad s_3 s_4 s_1 s_3, \quad s_3 s_4 s_3 s_1
 \]
- the decomposition \(s_1 s_3 s_4 s_3\) is the lexicographically first subword of \(\gamma^\infty\) among these words, and thus the \(\gamma\)-sorting word of \(w\)

\[
S_1 S_2 S_3 S_4 | S_1 S_2 S_3 S_4 | S_1 S_2 S_3 S_4
\]
\(\gamma \)-Sorting Words – Example

- Let \(W = A_4 \) with \(s_i = (i, i + 1) \), and \(\gamma = s_1 s_2 s_3 s_4 \)
- Consider \(w = s_1 s_4 s_3 s_4 \)
- There are eight reduced decompositions of \(w \), namely
 \[
 s_1 s_4 s_3 s_4, \quad s_4 s_1 s_3 s_4, \quad s_4 s_3 s_1 s_4, \quad s_4 s_3 s_4 s_1, \\
 s_1 s_3 s_4 s_3, \quad s_3 s_1 s_4 s_3, \quad s_3 s_4 s_1 s_3, \quad s_3 s_4 s_3 s_1
 \]
- The decomposition \(s_1 s_3 s_4 s_3 \) is the lexicographically first subword of \(\gamma^\infty \) among these words, and thus the \(\gamma \)-sorting word of \(w \)

\[
S_1 S_2 S_3 S_4 \mid S_1 S_2 S_3 S_4 \mid S_1 S_2 S_3 S_4
\]
\(\gamma\)-Sortable Words

- write the \(\gamma\)-sorting word of \(w\) as follows

\[
\gamma\text{-sorting word } w = s_{1}^{\delta_{1,1}} s_{2}^{\delta_{1,2}} \cdots s_{n}^{\delta_{1,n}} | s_{1}^{\delta_{2,1}} s_{2}^{\delta_{2,2}} \cdots s_{n}^{\delta_{2,n}} | \cdots | s_{1}^{\delta_{l,1}} s_{2}^{\delta_{l,2}} \cdots s_{n}^{\delta_{l,n}},
\]

where \(\delta_{i,j} \in \{0, 1\}\) for \(1 \leq i \leq l\) and \(1 \leq j \leq n\)

- \(i\)-th block of \(w\): the set \(b_{i} = \{s_{j} \mid \delta_{i,j} = 1\} \subseteq S\), where \(i \in \{1, 2, \ldots, l\}\)

- \(\gamma\)-sortable word: a word \(w \in W\) satisfying \(b_{1} \supseteq b_{2} \supseteq \cdots \supseteq b_{l}\)
\(\gamma \)-Sortable Words

- write the \(\gamma \)-sorting word of \(w \) as follows

\[
w = s_{\delta_{1,1}} s_{\delta_{1,2}} \cdots s_{\delta_{1,n}} | s_{\delta_{2,1}} s_{\delta_{2,2}} \cdots s_{\delta_{2,n}} | \cdots | s_{\delta_{l,1}} s_{\delta_{l,2}} \cdots s_{\delta_{l,n}},
\]

where \(\delta_{i,j} \in \{0, 1\} \) for \(1 \leq i \leq l \) and \(1 \leq j \leq n \)

- \(i \)-th block of \(w \): the set \(b_i = \{ s_j \mid \delta_{i,j} = 1 \} \subseteq S \), where \(i \in \{1, 2, \ldots, l\} \)

- \(\gamma \)-sortable word: a word \(w \in W \) satisfying \(b_1 \supseteq b_2 \supseteq \cdots \supseteq b_l \)

- the \(\gamma \)-sorting word \(w = s_1 s_3 s_4 | s_3 \) has \(b_1 = \{ s_1, s_3, s_4 \} \) and \(b_2 = \{ s_3 \} \) and is thus \(\gamma \)-sortable

- the \(\gamma \)-sorting word \(v = s_1 s_3 s_4 | s_2 \) is not
Theorem (Reading, 2005)

Let γ be a Coxeter element of a finite Coxeter group W. The γ-sortable elements of W constitute a sublattice of the weak order on W.

- consider the map $\pi_\gamma : W \to W$, $w \mapsto \pi_\gamma(w)$ that maps w to the largest γ-sortable element below it
- the fibers of π_γ induce a lattice congruence θ_γ on the weak order on W
- Cambrian lattice C_γ: the lattice quotient W/θ_γ
Cambrian Lattices – Example
Cambrian Lattices – Example

\[\gamma = s_1 s_2 s_3 \]
Cambrian Lattices – Example

\[\gamma = s_1 s_2 s_3 \]
Cambrian Lattices – Example

\[\gamma = s_1 s_2 s_3 \]
Cambrian Lattices – Example

\[\gamma = s_1 s_2 s_3 \]
Cambrian Lattices – Example

\[\gamma = s_1 s_2 s_3 \]
Cambrian Lattices – Example

\[\gamma = S_1 S_3 S_2 \]
Cambrian Lattices – Example

\[\gamma = s_3 s_2 s_1 \]
Cambrian Lattices – Example

\[\gamma = s_2 s_1 s_3 \]
Basics on Posets

- **bounded poset**: a poset that has a unique minimal and a unique maximal element
- Let $\mathbb{P} = (P, \leq_{\mathbb{P}})$ be a bounded poset
- \mathbb{P} is the poset that arises from \mathbb{P} by removing the maximal and minimal element (the so-called proper part of \mathbb{P})
- **chain**: linearly ordered subset c of P
 - notation: $c : p_0 <_{\mathbb{P}} p_1 <_{\mathbb{P}} \cdots <_{\mathbb{P}} p_s$
- **maximal chain in $[p, q]$**: there is no $p' \in [p, q]$ and no $0 \leq i < s$ such that
 - $p = p_0 <_{\mathbb{P}} p_1 <_{\mathbb{P}} \cdots <_{\mathbb{P}} p_i <_{\mathbb{P}} p' <_{\mathbb{P}} p_{i+1} <_{\mathbb{P}} \cdots <_{\mathbb{P}} p_s = q$
 - is a chain
Edge-Labelings

- cover relation $p <_P q$: $p <_P q$ and there is no $p' \in P$ with $p <_P p' <_P q$
- $\mathcal{E}(P) = \{(p, q) \mid p <_P q\}$ is the set of covering relations on P
- edge-labeling λ: map $\lambda : \mathcal{E}(P) \to \Lambda$, for some poset Λ
- $\lambda(c) = (\lambda(p_0, p_1), \lambda(p_1, p_2), \ldots, \lambda(p_{s-1}, p_s))$ is the label-sequence of c
- rising chain: a chain c such that $\lambda(c)$ is strictly increasing
- ER-labeling: an edge-labeling such that for every interval of P there is exactly one rising maximal chain
- EL-labeling: an ER-labeling such that the rising chain in every interval is lexicographically first among all maximal chains
EL-Shellability

- **EL-shellable poset**: a bounded poset that admits an EL-labeling
EL-Shellability

- **EL-shellable poset**: a bounded poset that admits an EL-labeling
- the order complex $\Delta(\mathcal{P})$ of an EL-shellable poset \mathcal{P} is shellable and hence Cohen-Macaulay
- the geometric realization of $\Delta(\mathcal{P})$ is homotopy equivalent to a wedge of spheres
- the i-th Betti number of $\Delta(\mathcal{P})$ is given by the number of falling maximal chains of length $i + 2$
- hence, the Euler characteristic $\chi(\Delta(\mathcal{P}))$ can be computed from the labeling
- if $0_\mathcal{P}$ is the unique minimal element and $1_\mathcal{P}$ the unique maximal element of \mathcal{P}, we have $\chi(\Delta(\mathcal{P})) = \mu(0_\mathcal{P}, 1_\mathcal{P})$
Outline

1 Preliminaries
 Cambrian Lattices
 EL-Shellability of Posets

2 EL-Shellability of C_γ
 The Labeling
 Main Result

3 Applications
 Topology of C_γ
 Subword Complexes
The Labeling

- recall that we write the γ-sorting word of $w \in W$ as
 \[w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}}, \]
 where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$
- define the set of filled positions of w in γ^∞ by
 \[\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N} \]
The Labeling

- recall that we write the γ-sorting word of $w \in W$ as
 $$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$
 where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^∞ by
 $$\alpha(w) = \{(i - 1) \cdot n + j | \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

- let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$
The Labeling

- recall that we write the γ-sorting word of $w \in \mathcal{W}$ as
 \[w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}}, \]
 where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$
- define the set of filled positions of w in \mathcal{L}_∞ by
 \[\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N} \]

- let $w = s_1 s_3 | s_2 s_4 | s_3 \in \mathcal{A}_4$

 $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0,$
The Labeling

- recall that we write the γ-sorting word of $w \in W$ as
 \[w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}}, \]
 where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$
- define the set of filled positions of w in γ^∞ by
 \[\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N} \]
- let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$
 \[w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1\} \]
The Labeling

- recall that we write the γ-sorting word of $w \in \mathcal{W}$ as
 \[w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}}, \]
 where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$
- define the set of filled positions of w in γ^∞ by
 \[\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N} \]
- let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$
 \[w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1\} \]
The Labeling

- recall that we write the γ-sorting word of $w \in W$ as
 \[w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}}, \]
 where $\delta_{i,j} \in \{0,1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$
- define the set of filled positions of w in γ^∞ by
 \[\alpha(w) = \{(i - 1) \cdot n + j | \delta_{i,j} = 1\} \subseteq \mathbb{N} \]
- let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$
 \[\begin{align*}
 w &= s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \\
 \alpha(w) &= \{1, 3\}
 \end{align*} \]
The Labeling

• recall that we write the γ-sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$

• define the set of filled positions of w in γ^∞ by

$$\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$

$$w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3\}$$
The Labeling

- recall that we write the \(\gamma \)-sorting word of \(w \in W \) as

\[
 w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},
\]

where \(\delta_{i,j} \in \{0, 1\} \) for \(1 \leq i \leq l \) and \(1 \leq j \leq n \)

- define the set of filled positions of \(w \) in \(\gamma^\infty \) by

\[
 \alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}
\]

- let \(w = s_1 s_3 | s_2 s_4 | s_3 \in A_4 \)

\[
 w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3\}
\]
The Labeling

- recall that we write the γ-sorting word of $w \in W$ as
 \[w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}}, \]
 where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$
- define the set of filled positions of w in γ^∞ by
 \[\alpha(w) = \{ (i - 1) \cdot n + j \mid \delta_{i,j} = 1 \} \subseteq \mathbb{N} \]
- let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$
 \[w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6\} \]
The Labeling

• recall that we write the γ-sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$

• define the set of filled positions of w in γ^∞ by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$

$$w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6\}$$
The Labeling

- recall that we write the γ-sorting word of $w \in \mathcal{W}$ as
 \[w = s_{1,1}^1 s_2^1 \cdots s_n^1 | s_{1,1}^2 s_2^2 \cdots s_n^2 | \cdots | s_{1,1}^l s_2^l \cdots s_n^l, \]
 where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$
- define the set of filled positions of w in γ^∞ by
 \[\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N} \]
- let $w = s_1 s_3 s_2 s_4 | s_3 s_2 s_4 s_1 \in A_4$
 \[w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6, 8\} \]
The Labeling

- recall that we write the γ-sorting word of $w \in W$ as
 \[w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}}, \]
 where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$
- define the set of filled positions of w in γ^∞ by
 \[\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N} \]
- let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$
 \[w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6, 8\} \]
The Labeling

- recall that we write the γ-sorting word of $w \in W$ as
 \[w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}}, \]
 where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$
- define the set of filled positions of w in γ^∞ by
 \[\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N} \]
- let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$
 \[w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6, 8\} \]
The Labeling

- recall that we write the γ-sorting word of $w \in W$ as
 \[w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}}, \]
 where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^∞ by
 \[\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N} \]

- let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$

 \[w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6, 8, 11\} \]
recall that we write the γ-sorting word of $w \in W$ as
\[w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}}, \]
where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^∞ by
\[\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N} \]

- let $w = s_1 s_3 \big| s_2 s_4 \big| s_3 \in A_4$
\[w = s_1^1 s_2^0 s_3^1 s_4^1 \big| s_1^0 s_2^1 s_3^0 s_4^1 \big| s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6, 8, 11\} \]
The Labeling

- recall that we write the γ-sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}}|s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}|\cdots|s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$

- define the set of filled positions of w in γ^∞ by

$$\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

- let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$

$$w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6, 8, 11\}$$
The Labeling

- recall that we write the γ-sorting word of $w \in W$ as
 \[w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} \mid s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} \mid \cdots \mid s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}}, \]
 where $\delta_{i,j} \in \{0, 1\}$ for $1 \leq i \leq l$ and $1 \leq j \leq n$
- define the set of filled positions of w in γ^∞ by
 \[\alpha(w) = \{(i - 1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N} \]
- $\lambda : \mathcal{E}(C_\gamma) \to \mathbb{N}, \ (u, v) \mapsto \min\{\alpha(v) \setminus \alpha(u)\}$
The Labeling – Example
Main Result

Theorem

For every finite Coxeter group W and every Coxeter element $\gamma \in W$, the edge-labeling λ is an EL-labeling of C_γ.

We need two technical lemmas for the proof!
Lemma 1

Let $u \leq v$ in C_γ. If u and v have the same first block b, then let u', v' be the elements obtained by omitting b. Then, $u', v' \in C_\gamma$, and we have:

1. The intervals $[u, v]$ and $[u', v']$ are isomorphic.
2. For every $w'_1, w'_2 \in [u', v']$ with $w'_1 \preceq w'_2$ we have
 $\lambda(bw'_1, bw'_2) = \lambda(w'_1, w'_2) + n$.
Lemma 2

Lemma

For $u, v \in C_\gamma$ with $u \leq v$ define $i_0 = \min \{ i \in \alpha(v) \setminus \alpha(u) \}$. The following hold:

1. The label i_0 appears in every maximal chain of $[u, v]$.
2. There is a unique element $u_1 \in (u, v)$ with $u \preceq u_1$ and $\lambda(u, u_1) = i_0$.
3. $\alpha(u)$ is a subset of $\alpha(v)$.
4. The labels of each maximal chain in $[u, v]$ are distinct.
Main Result

Theorem

For every finite Coxeter group W and every Coxeter element $\gamma \in W$, the edge-labeling λ is an EL-labeling of C_γ.

Sketch of proof:

- proceed by induction on the length k of the interval $[u, v]$
- if $k = 2$, then the result follows from Lemma 2
- Lemma 2 tells us that there exists an $u \lessdot u_1$ in $[u, v]$ with $\lambda(u, u_1) = i_0$
- apply induction on the interval $[u_1, v]$ to find the maximal chain $u_1 \lessdot u_2 \lessdot \cdots \lessdot v$ which is rising and lexicographically first
- by definition and Lemma 2, the chain $u \lessdot u_1 \lessdot u_2 \lessdot \cdots \lessdot v$ is the desired maximal chain in $[u, v]$
Outline

1 Preliminaries
 Cambrian Lattices
 EL-Shellability of Posets

2 EL-Shellability of C_γ
 The Labeling
 Main Result

3 Applications
 Topology of C_γ
 Subword Complexes
Theorem (Reading, 2004)

Every open interval in a Cambrian lattice is either contractible or homotopy equivalent to a sphere.

- Nathan Reading obtained this result by showing that \(C_\gamma \) is a special instance of a fan lattice associated to a central hyperplane arrangement
- he showed this property for this larger class of lattices
- having an EL-labeling of \(C_\gamma \), we can proof this property directly
Topology of C_γ

Theorem

Let $u, v \in C_\gamma$ with $u \leq v$. Then $|\mu(u, v)| \leq 1$.

- if \mathcal{P} is an EL-shellable poset, and $p, q \in \mathcal{P}$ with $p \leq q$, then

 $\mu(p, q) = \# \text{ even length falling chains in } [p, q] - \# \text{ odd length falling chains in } [p, q]$

- we show that there exists at most one falling chain in each interval
Subword Complexes

- Vincent Pilaud and Christian Stump have recently shown that the Cambrian lattices coincide with the poset of flips of special subword complexes.
- Christian Stump observed that our labeling is a specialization of a natural labeling of the poset of flips for every subword complex.
Thank You.
An EL-Labeling for Trim Lattices

• let L be a lattice
• left-modular element: $x \in L$ such that for all $y, z \in L$ holds
 $$(y \lor_L x) \land_L z = y \lor_L (x \land_L z)$$
• left-modular lattice: a lattice that contains a maximal chain of left-modular elements
• join-irreducible element: $x \in L$ which covers exactly one element
• meet-irreducible element: $x \in L$ which is covered by exactly one element
• trim lattice: a left-modular lattice (with left-modular chain of length n) that has exactly n join- and n meet-irreducible elements
An EL-Labeling for Trim Lattices

- let L be a finite lattice with left-modular chain
 $\hat{0} = x_0 \leq_L x_1 \leq_L \cdots \leq_L x_n = \hat{1}$
- $\gamma : \mathcal{E}(L) \to \mathbb{N}, \ (p, q) \mapsto \min \{ i \mid p \lor_L x_i \land_L q = q \}$

Proposition (Liu, 1999)

If L is a finite, left-modular lattice, then γ is an EL-labeling.
Liu’s Labeling
Our Labeling